
Vectorizing for a SIMdD DSP Architecture

Dorit Naishlos Marina Biberstein Shay Ben-David Ayal Zaks

IBM Haifa Labs
Haifa University Campus

Haifa 31905, Israel
{dorit, biberstein, bendavid, zaks}@il.ibm.com

Abstract. The Single Instruction Multiple Data (SIMD)
model for fine-grained parallelism was recently extended to
support SIMD operations on disjoint vector elements. In
this paper we demonstrate how SIMdD (SIMD on disjoint
data) supports effective vectorization of digital signal pro-
cessing (DSP) benchmarks, by facilitating data reorganiza-
tion and reuse. In particular we show that this model can be
adopted by a compiler to achieve near-optimal performance
for important classes of kernels.

Categories and Subject Descriptors
D.3.4 [Processors]: compilers, optimization; C.1.1 [Single
Data Stream Architectures]: RISC/CISC, VLIW archi-
tectures; C.1.2 [Multiple Data Stream Architectures
(Multiprocessors)]: Single-instruction-stream, multiple-
data-stream processors (SIMD)

General Terms
Performance, Algorithms

Keywords
SIMD, vectorization, subword parallelism, rotating register
file, compiler controlled cache, data reuse, viterbi

1. INTRODUCTION
Architectures of modern Digital Signal Processors (DSP)

[7, 10] and multi-media extensions [19, 8] aim to combine
high performance execution with low power consumption.
In particular, they exploit the natural parallelism present in
signal processing applications by simultaneously executing
the same instruction on multiple data elements. This Single
Instruction Multiple Data (SIMD) model usually requires
that operands be packed in advance in “vector” registers.

Programmers and optimizing compilers use vectorization
techniques [23] to exploit the SIMD capabilities of the archi-
tecture. Such techniques reveal temporal and spatial local-
ity in the scalar source code and transform groups of scalar

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CA SE S’03, Oct. 30–Nov. 1, 2003, San Jose, California, USA.
Copyright 2003 ACM 1-58113-676-5/03/0010 ...$5.00.

instructions into vector ones. It is often very complicated
to apply vectorization techniques to a DSP architecture, be-
cause the latter usually has scarce resources with tight inter-
dependencies between them. Vectorization is often further
impeded by the memory architecture, which typically pro-
vides access to contiguous memory items only with addi-
tional alignment restrictions. Computations, on the other
hand, may access data elements in an order which is nei-
ther contiguous nor adequately aligned (e.g. a Complex Fil-
ter). Packing data elements into and out of vector registers
is usually done with special gather, scatter or permute in-
structions, which incur additional performance penalties and
complexity.

The eLite DSP of IBM [15] was explicitly designed to sup-
port efficient vectorization techniques by providing multiple
resources with minimum inter-dependencies and irregular
constraints, yet under strict low-power considerations. It
features a large vector-element register file accessible indi-
rectly through vector pointers, supporting Single Instruction
Multiple disjoint Data (SIMdD) instructions. Traditional
Single Instruction Multiple packed Data (SIMpD) instruc-
tions that operate on vector registers are supported as well.

In this paper we focus on these unique architectural fea-
tures and describe how they can support vectorization tech-
niques applied both manually and automatically using an
optimizing compiler. We show how SIMdD helps solve data-
reordering and register-renaming problems that occur when
large amounts of vector data need to be reordered or re-
accessed, thereby enabling the vectorization of a wide range
of patterns with only a small constant overhead. In particu-
lar, we show how a large vector-element file can support data
reuse across loops and loop nests, thus introducing new op-
timization opportunities as well as new challenges that have
not been traditionally related to the vectorization domain.

The contributions of this paper are as follows:

• New vectorization techniques for SIMdD architectures
that efficiently vectorize non contiguous and/or mis-
aligned access patterns, with very small constant over-
heads.

• New techniques for exploiting large vector register files
with rotating and indirect addressing, allowing a vec-
torizing compiler to aggressively exploit temporal and
spatial reuse and efficiently hide or eliminate memory
latencies.

• SIMD acceleration of Viterbi decoder using a random,
indirectly accessible vector register file.

2

Vector
Accum.

unit

Vector
Element

unit
32

64

Vector
Pointer

unitStorage
access

Integer
unit

Branch
unit

4xNvp

CR logic (8 bits)

Instr.
storage

XBus (64 bits)

Memory Data Bus (Datain, Dataout; 64 bits each)

Data storage

64
6432

32 32 64 64 64

32

64

VMR logic (8x4 bits)

Scalar units Vector units

Figure 1: Block Diagram of the eLite Architecture

• Automatically derived experimental results that com-
pare the performance of compiler-generated code with
hand-optimized code. Our results show that the com-
piler can achieve comparable results to hand-optimized
code.

The paper is outlined as follows: Section 2 and Section 3
provide a brief background on the target architecture and
the compiler. Section 4 presents two key kernels that will
be used throughout the rest of the paper to demonstrate
the different programming and compilation techniques. Sec-
tion 5 describes how compiler-controlled caching can be im-
plemented to facilitate reuse and eliminate or hide memory
latencies, using innovative vector pointer registers. Section 6
shows the unique solution of the eLite DSP to the data re-
ordering problem, followed by a demonstration of how the
random access pattern is vectorized in Section 7. In section 8
we present experimental results that demonstrate the com-
petitiveness of compiler-optimized code compared to hand-
programmed assembly, and Section 9 concludes.

2. AN OVERVIEW OF ELITE
The eLite DSP is a load/store RISC-like architecture. In

addition to SIMD parallelism, Instruction-level parallelism
is realized in eLite through the packing of multiple instruc-
tions into long-instruction words (LIWs). Figure 1 presents
a high-level view of the architecture. The units which are
most relevant for this paper are:

Vector Element unit: performs SIMdD operations on the
data stored in Vector Element Registers. The num-
ber of these registers is between 64 and 4096 and is
implementation-dependent.

Vector Pointer unit: performs SIMpD operations on 16
Vector Pointer Registers, which are used to access the
Vector Element Registers.

Vector Accumulator unit: performs SIMpD operations
on data in 16 Vector Accumulator Registers.

In addition, Vector Mask Registers support conditional
execution of individual operations within a vector instruc-
tion, using dynamically evaluated masks.

1 6 - b i t u n i t s

D a t a s t o r a g e

V e c t o r
E l e m e n t

R e g i s t e r s

V e c t o r
P o i n t e r

U n i t

4 x N v p

6 4

1 2 8

V e c t o r
A c c . R e g s .

3 2 (4 0) - b i t u n i t s

4 x 1 64 x 1 6

1 6 0

6 4

A r b i t r a r y e l e m e n t s

P a c k e d e l e m e n t s

1 6 01 6 01 6 0

VARs

VERs

VEU

VAU

VPU

Figure 2: eLite Vector Units and Vector Program-
ming Model

The SIMD units are shown in more detail in Figure 2.
The Vector Element Unit (VEU) operates on vectors of 4-
elements, each element being a 16-bit Vector Element Reg-
ister (VER). The elements of each vector are selected from
the Vector Element File (VEF) — a large, multiport, scalar
register file containing 2NV P independently addressable ele-
ments. NV P is a parameter associated with implementa-
tions of the architecture, with an architectural limit value of
12 (4096-element VEF) and typical values for initial imple-
mentations in the range of 6 to 9 (64-element to 512-element
VEF).

The selection of elements from the Vector Element File
(VEF) is indirect, via indices specified by Vector Pointer
Registers (VPRs; these are omitted from Figure 2 for sim-
plicity). The vectors operated on by the VEU are thus dy-
namically composed and can be extensively reused by setting
the VPRs appropriately. The VAU on the other hand, op-
erates on “packed” Vector Accumulator Registers (VARs),
each holding 4-elements of 40-bit each.

We now describe how Vector Pointers index elements in
the VEF. A VPR contains four indices, each in the range
of 0 to |VEF|-1. In addition, associated with each VPR is
a mechanism for post-incrementing the indices with modulo
wrap-around. In this paper we describe a vector pointer
setup by the tuple

(v, (∆0, ∆1, ∆2), δ, ρ),

which means that the indices of the vector pointer are ini-
tially set to (v0, v1, v2, v3) =

(v, v + ∆0, v + ∆0 + ∆1, v + ∆0 + ∆1 + ∆2),

and after post-increment the value of each vi becomes

vi − (vi mod ρ) + ((vi + δ) mod ρ).

For example, a VP that toggles between accessing two con-
secutive quadruples of vector element registers starting at
address v (divisible by 8) has the setup (v, (1, 1, 1), 4, 8).

Additional instruction forms support more general up-
dates of the VPR indices, and a VPR can also be explic-
itly modified by a special instruction. Note that in all cases

3

Legend

Data/control flow

Data flow

Code Transformation

Prune implementation
options

Replace scalar ops
with vector ops

Assign vector
resources

…

Intra-Loop Analyses

Access patterns

Vectorizability

A

Inter-Loop Analyses

Detect data reuse

B

C

Implementation Options:
The set of possible VP setups

and resource requirements

S

Figure 3: SIMdD Vectorization Framework

the index updating takes place in the Vector Pointer Unit
(VPU), itself an SIMD functional unit, and the updated in-
dices are written back into the same VPR.

3. THE ELITE COMPILER
The vectorization analyses and transformations described

in this paper were implemented in a new “vectorizer” com-
pilation pass that we added to an optimizing compiler. The
compiler is based on Chameleon, an IBM VLIW Research
Compiler [14]. With an enhanced form of Dependence Flow
Graph (DFG) [20] and Static Single Assignment (SSA) (see,
e.g. [16]), Chameleon has a repertoire of standard SSA-based
optimizations and provides a rich infrastructure for compiler
development. An outline of the vectorizer is given in Fig-
ure 3. Our vectorizer follows the loop-based vectorization
approach because of our interest in exploiting reuse, and
because it was appropriate for the kernels we focused on.

The first analysis phase (block A in Figure 3) identifies
vectorizable loops using standard tests that include mem-
ory and data dependence analysis [23]. In addition, access
patterns and memory alignment of data references are iden-
tified at this stage in order to compute the minimum set
of resources required for vectorizing each loop, and also
for eventual vector pointer setup. This information (rep-
resented by block S) defines a set of possible options for
laying out data in the VEF (i.e. VEF allocations), and a
set of options for accessing that data (i.e. VP setups). VP
setups and VEF layouts are discussed in detail Section 5
and Section 6. These sets of implementation options may
be augmented during cross-loop analysis (block B) as reuse
opportunities are detected.

The vectorizer now decides upon a vectorization scheme
(block C) guided by the analysis results summarized in block
S. This implies

1. assigning operations to vector units (SIMdD/SIMpD),
and

2. designating both VEF areas and VP setups for SIMdD
assigned operations.

Operations are assigned to vector units according to the
following criteria:

• Functionality constraints — if the necessary function-
ality is supported by only one of the units, then the
operation is assigned to that unit.

• If there are opportunities for data reuse or needs for
data reorganization, then the operation is assigned to
the SIMdD unit.

• Otherwise latency, load balancing, and other factors
are considered.

Once all operations have been assigned, the vectorizer se-
lects for each memory reference that was mapped to the
SIMdD unit a VEF assignment from the pool of available
options (block S). It proceeds in a greedy manner, prefer-
ring the most profitable assignment for each array reference,
pruning other options as resources become exhausted.

The final phase in the vectorizer performs the actual code
transformation. This includes transforming the loops (un-
rolling, unroll-and-jam [3], variable expansion) and replacing
scalar operations by vectorized counterparts, updating the
DFG accordingly. Subsequent phases that take place after
the vectorizer (such as the instruction scheduler) may apply
further changes to the VPR setup in order to remove VEF
anti-dependencies.

4. THE MAIN KERNELS
We now present two fundamental kernels in the multime-

dia domain: FIR filter and Viterbi decoder. We will use
them in the following sections to demonstrate how various
vectorization issues are handled when programming or com-
piling for a SIMdD architecture.

4.1 FIR Filter
The FIR filter, one of the most basic DSP kernels, per-

forms filtering of speech signals in modern voice coders such
as the ETSI GSM EFR/AMR or ITU G.729, and in many
other signal processing areas. For a filter length M , coef-
ficients array h[0, ..., M − 1], input sequence x() and out-
put sequence y(), the FIR algorithm computes the following
mathematical relationship among these signals in the time
domain:

y(n) =

M−1�

i=0

h(i)x(n − i).

Usually the output y(n) is needed for several values of n, so
several outputs may be computed in parallel. The number
of outputs computed together is called “frame size” and is
denoted by N .

The FIR kernel may be vectorized in two fashions: inner
loop vectorization (by accumulator variable expansion), in
which each iteration of the vectorized inner loop generates
a single output (Figure 4a), or outer loop vectorization (by
unroll and jam), in which several outputs are computed in
parallel (Figure 4b).

4.2 Viterbi Decoder
One of the most important uses of the Viterbi Decoder al-

gorithm is finding the most probable transmitted sequence of
convolutional coded (CC) sequence. Such codes are widely
used in digital communication. The most probable solution
is also known as the Maximum-Likelihood (ML) solution.

The Viterbi Algorithm includes three steps. In the first
step, branch metrics are computed. In the second step, the

4

for (int i = 0; i < N; i++) {

ytemp(0,1,2,3) = {0,0,0,0};

for (j = 0; j < M; j+=4) {

ytemp(0,1,2,3) += h(j,j+1,j+2,j+3)

* x(i-j+M-1,i-j+M,i-j+M+1,i-j+M+2);

}

y(i) = ytemp0 + ytemp1 + ytemp2 + ytemp3;

}

(a) Accumulator Variable Expansion

for (int i = 0; i < N; i+=4){

y(i,i+1,i+2,i+3) = {0,0,0,0};

for (j = 0; j < M; j++){

y(i,i+1,i+2,i+3) += h(j)

* x(i-j+M-1,i-j+M,i-j+M+1,i-j+M+2);

}

}

(b) Unroll and Jam

Figure 4: Vector FIR Pseudo Code

for (j=0; j < numStates/2; j++) {

y = M[metric[j]];

s0 = oldStates[2*j] + y;

s1 = oldStates[2*j+1] - y;

trace <<= 1;

if (s1 < s0) {

trace |= 0x1;

s1 = s0;

}

newStates[j] = s1;

}

Figure 5: C Code for the Viterbi Add-Compare-
Select Kernel

algorithm performs a maximization of the Likelihood func-
tion through a sequence of add-compare-select (ACS) oper-
ations, which computes an array of new state metrics based
on the current state metrics and the set of the branch met-
rics computed in the first step. The corresponding ACS
operations will be referred to as butterfly operations. In the
third step, a traceback operation is performed from the end
of the trellis, in which the most likely path through the trel-
lis is identified and the data corresponding to the branches
on that path is detected.

The parameters defining the Viterbi decoder complexity
are the rate 1/n and the constraint length K. As typically
K = 9 (e.g. in 3G cellular networks), the most compu-
tationally intensive part is the second (ACS) step, and we
therefore concentrate on it.

The code in Figure 5 illustrates one half of the Viterbi
Butterfly (the second half is similar): s0, s1 are taken from
the oldStates array, and y is the relevant branch metric
update taken from the branch metric array M . The deci-
sions are packed into trace. The maximum is kept in the
newStates array.

Note that the kernel can be written so that there are
no cross-iteration data dependences, therefore the code is
amenable to SIMD parallelism. Both the maximization and
the trace update need special care, though.

5. DATA MANAGEMENT
Multimedia computations often deal with very long data

streams. Therefore, questions like: “Does the data fit within

(a) Naive (b) With Pre-Loading

Figure 6: Vector Pointer Setup Example

the vector registers?”, “How should the data be loaded into
the vector registers?” and “Can the data be reused?” — are
all critical to efficient programming in this domain. In this
section we discuss two data management related program-
ming techniques: register renaming and software caching.
Both techniques are known and widely used, but are es-
pecially suitable to SIMdD where the VEF with its VPs
supply a new and very powerful way of implementing these
optimizations. These techniques were also automated and
incorporated into the eLite compiler.

5.1 Register Renaming and Rotating Regis-
ters

First let’s examine how to program an inner-loop vector-
ized FIR kernel (Figure 4a). Assuming that the computation
will be performed in the VEU unit, array h is to be written
(loaded) into the VEF using vpwrite and then manipulated
using vpread. A possible setup for these vector pointers is
vpread = vpwrite = (v, (1, 1, 1), 4, 4), in which case the vec-
tor pointers rotate over the same 4 elements, as depicted in
Figure 6a.

Such a “Naive” data layout occupies minimal VEF space,
but at the price of creating anti dependencies which severely
constrain instruction scheduling and software pipelining. In-
creasing the number of elements over which the vector point-
ers rotate, to e.g. 16: vpread = vpwrite = (v, (1, 1, 1), 4, 16),
as shown in Figure 6b, will occupy more vector registers,
but at the same time will increase the distance of these
dependencies and enable aggressive code motion, including
scheduling loads early in a software pipelined way to hide
load latencies. In traditional architectures, register renam-
ing poses a difficulty [16] as several values are kept “alive”
at the same time, requiring more than one physical register
and hence duplication of code or rotation of registers, either
by software [3] or by special hardware [9].

5

The indirect register addressing of eLite’s vector pointers
solves this naming problem by providing rotating vector-
register addressing that is much more powerful than existing
rotating (scalar-)register mechanisms. Each vector-pointer
defines the set of vector-elements over which it rotates, inde-
pendent of other vector-pointers. The elements over which a
vector pointer rotates need not be consecutive; indeed, two
rotating vector pointers may have some elements in com-
mon. The rotation itself is activated for each vector pointer
independently, and is not associated with any global instruc-
tion.

In the eLite DSP, hiding load latencies (and similarly more
general software-pipelining optimizations) are performed by

1. placing loads in the loop prolog,

2. extending the VEF area reserved for the array so that
it could contain all the loaded elements until they are
last used, and

3. modifying the pointer setup accordingly.

In the example in Figure 6b, three loads can be hoisted to
the loop prolog to pre-load twelve elements. Accordingly,
the VEF allocation changes from four elements (as in Fig-
ure 6a) to 16 elements, so that there is enough space to hold
data three iterations forward. Finally, the setup of the vec-
tor pointers used to read and write is modified so that the
autoupdate, which advances them forward by four elements
(as before), will rewind to the beginning at the boundary of
16 elements (instead of 4).

Note that changing the number of registers over which
to rotate is accomplished by simply changing a parameter
in vector pointer setup (in the loop prologue), rather than
reassigning registers to all relevant instructions or making
any other modifications within the loop. This is a very im-
portant advantage for a compiler, because such decisions
may be taken during scheduling (i.e., after vectorization)
according to the VEF availability, or during vectorization in
anticipation of future scheduling needs.

5.2 Data Reuse and Cache Management in the
VEF

In the specific case demonstrated above (simple access
pattern, no data reorganization required), the advantage of
SIMdD over SIMpD is mainly in the simplicity it offers to the
compiler and programmer, relieving them from the need to
worry about register renaming when considering issues like
VEF space and load latencies. The effectiveness of rotating
registers is even more evident if data reuse can be exploited.

We illustrate the potential of data reuse using the outer-
loop-vectorized FIR example (Figure 4b). There, in each
iteration i of the outer loop, the inner loop accesses M +
3 elements of the x array residing in VEF entries [i, i +
1, . . . , i + M + 2]. Figure 7 shows how in each outer-loop
iteration this shaded interval shifts 4 elements to the right.
Note that this kind of access pattern requires many shuffling
instructions in SIMpD.

Figure 7 illustrates the overlap that exists between the
regions of array x that are accessed in different iterations
of the outer loop. A proper layout of the data in the VEF
will allow to take advantage of this data reuse, and avoid
reloading the same elements multiple times.

Exploiting reuse opportunities to reduce memory access
latencies overhead is known to have dramatic effect on appli-

0 1 2 3 4 5 6 7 8 … … …M+2

0 1 2 3 4 5 6 7 8 … … …

0 1 2 3 4 5 6 7 8 … … …

M+6

N+M+2

updateupdate

updateupdate

updateupdate

N+M+2

N+M+2

Special update between outer-loop iterations

iter 0:
Compute
Y(0..3)

iter 1:
Compute
Y(4..7)

iter n/4:
Compute
Y(n-4..n-1)

……

vpread

vpread

vpread

Figure 7: FIR with Flat Data Layout for Array x in
VEF

0 1 2 3 4 5 6 7 8 … … …

updateupdateupdate vpread

K

Figure 8: FIR with Cyclic Data Layout for Array x
in VEF

cation performance. This is especially true for DSP and mul-
timedia kernels, with their tight loops and well-structured
array based computations. A classic solution to this problem
is aggressive usage of large multi-levelled cache hierarchies,
often accompanied with various loop transformations to en-
hance temporal and spatial reuse [23, 11], as well as various
hardware mechanisms to augment the cache performance
[18, 4, 21]. Most of these mechanisms are not controlled by
software and cannot benefit from the data flow information
available to the compiler. Such information can be utilized
by compiler-controlled caching.

The large number of registers available in eLite’s vector
element file, together with the indirect access using vec-
tor pointers, are ideal for implementing a software-managed
vector-data cache that takes advantage of spatial and tem-
poral reuse. Such reuse occurs, for example, when (all or
part of) the data required by a computation already resides
in the VEF, because it was needed or put there by a pre-
vious computation (such as previous iterations of a loop, as
in the FIR example).

In the FIR example, one could place all N+M+3 elements
of array x in the VEF, if there are available VERs, as de-
picted in Figure 7. However, this is not necessary — a more
compact layout might achieve the same scheduling flexibil-
ity and reuse benefits, by streaming part of the data instead
of pre-loading it. This is illustrated in Figure 8, where mod-
ulo arithmetic is used to wrap-around the same K VERs,
where K < N + M + 3. For example, if K = M + 6, then
after using elements 0,1,2,3 we replace them with elements
M + 7, M + 8, M + 9, M + 10, and so on.

An implementation of the inner loop body is shown in
Figure 9a. The loading of arrays x and h from memory
into the VEF, as well as the setup code at the loop prolog
are omitted for simplicity. Note that the code for the loop

6

vemul va1,(vp0),(vp1) || bnz

nop

nop

vaadd va0,va0,va1

(a) Naive

vemul va1,(vp0),(vp1) || vaadd va0,va0,va2 || bnz

vemul va2,(vp0),(vp1) || vaadd va0,va0,va3

vemul va3,(vp0),(vp1) || vaadd va0,va0,va4

vemul va4,(vp0),(vp1) || vaadd va0,va0,va1

(b) Software Pipelined

Figure 9: FIR Inner-Loop Implementation

… … H … H+M-1

vpread
update update update

vpwrite update update

Figure 10: VP Setup for the Coefficients Array h in
FIR

body remains the same regardless of which of the two data
layouts (flat or cyclic) is used. Only the setup code at the
loop prologue is affected. For the “flat” data layout, the
vector pointer that is used to access array x in the VEF is
setup as

vp = (M − 1, (1, 1, 1),−1,∞),

whereas for the wrap-around case the setup is

vp = (M − 1, (1, 1, 1),−1, mod).

Each time a VEU multiplication uses vp, the autoupdate
mechanism associated with all VEU operations moves the
pointer to its next position. In the “flat” case, an additional
special update instruction will have to be used between outer
loop iterations to bump vp to its next starting position.

Figure 10 illustrates the setup of vector pointers used to
access the coefficients array h. The register used to read the
array in the VEF is setup as

vpread = (H, (0, 0, 0), 1, M),

and the array is written into VEF using

vpwrite = (H, (1, 1, 1), 4,∞).

To avoid idling while waiting for the result of the multi-
plication, the loop is software pipelined (see Figure 9b). We
have to perform register renaming and use different names
for the result registers (va1, . . . , va4), but the same two vec-
tor pointer registers are used for all multiplications.

In the case of the FIR kernel the compiler is able to match
the programmer performance-wise, due to its ability to ex-
pose these reuse opportunities; Its inter-loop analyzer prop-
agates memory references information through the loop hi-
erarchy tree in a leaf-to-root manner, similarly to [5]. When
detecting overlapping accesses, the vectorizer can allocate
VEF entries to support data sharing across loop iterations
and between loops according to available resources.

Another very important advantage of using vector point-
ers for rotating addressing, is that the operations writing
to rotated registers are “disengaged” from the operations
that read from them. This is true for indirect addressing
in general. Using vector pointers, however, provides rotat-
ing addressing in conjunction with data reorganization, as
described in the next section.

6. EFFECTIVE DATA REORGANIZATION
Data reorganization problems occur when the input to

one vector instruction is a permutation of another vector in-
struction’s output, or a combination of outputs produced by
several vector instructions. The memory architecture may
also cause data reorganization problems, when the order of
input (or output) to a vector instruction is not directly sup-
ported by memory operations.

The SIMpD architectures provide capabilities to pack and
unpack data to and from vector registers, either during mem-
ory operations [1, 6], or within register files [1, 8, 19, 17, 22].
This approach for reorganizing vector data has a number of
drawbacks. Reordering within memory operations increases
the already long latency of memory operations, may cause
a series of cache misses when addressing several remote lo-
cations and misses spatial reuse opportunities [23]. Special
permutation instructions, on the other hand, introduce ad-
ditional overheads. When reordering is applied repeatedly
(e.g., within a loop), such overheads are incurred each time.

SIMdD allows permuting the access without actually mov-
ing any data. Multiple instructions that need the same per-
mutation may (re)use the same VP thanks to its implicit
update capabilities. The penalty at each permuted access
is thus replaced by a one-time penalty of setting up a VP.
We start with a description of a simple special case of re-
organization: alignment in memory. We then describe how
to handle interleaved access and present the general alter-
natives and considerations in setting of data reorganization
in SIMdD.

6.1 Alignment in Memory
Memory alignment constraints raise problems that can

be handled using data reordering mechanisms. Accessing a
block of memory from a location which is not aligned on a
certain boundary is often prohibited or bears a heavy perfor-
mance penalty. The memory architecture in the eLite DSP,
for example, restricts vector data accesses to 4 consecutive
16-bit elements in memory aligned on 64-bit boundary, with
an option to disable storing any subset of elements. Tech-
niques used to avoid these penalties such as loop-peeling [2]
or dynamic alignment detection [12] are not always applica-
ble and increase code size. Techniques that try to confront
this problem usually incur a penalty that grows linearly with
the data set size [13, 6].

7

Memory alignment problems can be treated as a special
case of data reordering, where the access to a contiguous
data set is slightly shifted to comply with the memory align-
ment constraints. In order to read from an array that is not
aligned in memory using SIMdD, the array can be loaded
into the VEF as if it starts at the nearest aligned address
preceeding the first element, and ends at the nearest aligned
address following the last element. This is accomplished by
having one extra vector load instruction (that brings data
from memory and places it in the VEF) in the loop pro-
logue; it requires a few extra spaces in the VEF, but the
vector pointer pattern remains the same for all loads. The
vector pointers used to read the loaded data from the VEF
also retain the same pattern, but skip over the first few
elements. Storing data to unaligned memory locations is
handled similarly to loads, except that the first and last
vector store instructions are masked appropriately so as not
to write past the bounds of the target array. We are thus
able to load and store arrays into unaligned memory loca-
tions using accesses to aligned memory only, with only a
small constant overhead.

To illustrate the solution for misaligned memory access,
consider an FIR where the h array may not be properly
aligned in memory. Assume that the array h is stored in
memory starting at address s and ending at address t, where
addresses are expressed in 16-bit units (so t − s = |h| − 1).
Let b = s mod 4 and e = t mod 4. If b �= 0 or e �= 3 we cannot
read h exactly from memory into the VEF, because h is not
properly aligned. The solution is to load a properly aligned
interval containing h, starting from s−b until t+3−e. This
may load at most six extra elements, whatever the length of
array h. We could use, for example,

vpwrite = (A, (1, 1, 1), 4,∞)

for writing into the VEF and

vpread = (A + b, (1, 1, 1), 4,∞),

for reading from the VEF, thus skipping the extra b elements
at the beginning.

6.2 Interleaved Access Pattern
Reordering of data is required when an access pattern

is not consecutive. The constant-stride pattern (d, d, d) is
probably the most widespread non-consecutive pattern in
the DSP context. With d = 2 this pattern appears in com-
putations on complex numbers, where the real and imagi-
nary parts are interleaved in the same input or output ar-
ray. Complex inputs must be de-interleaved to carry out
the SIMD computations, and complex outputs need to be
re-interleaved. Decoders and encoders for interleaved codes
and computations on very long data types also give rise to
this pattern.

Consider, for example, the complex FIR filter:

Re(yn) =
M−1�

i=0

[Re(hi)Re(xn−i) − Im(hi)Im(xn−i)],

Im(yn) =
M−1�

i=0

[Re(hi)Im(xn−i) + Im(hi)Re(xn−i)].

The pseudo-code is given in Figure 11, under a fairly real-
istic assumption that arrays h and x contain the real and
imaginary elements interleaved. In eLite’s SIMdD architec-

(a) Standard (b) VP-economic

Figure 12: Reordering at VEF Read

Figure 13: Reordering at VEF Write

ture the data does not need to be moved within registers to
access an even tuple or an odd tuple. By setting

vpwrite = (v, (1, 1, 1), 4,∞)

vpreadEven = (v, (2, 2, 2), 8,∞)

vpreadOdd = (v + 1, (2, 2, 2), 8,∞)

we achieve the required reorganization on-the-fly. Accord-
ingly, a straightforward setup of VPs for the multiplication
instructions uses four pointers, one for each real or imagi-
nary part of each input array, using the following settings:
(v1, (2, 2, 2), 8, 8), (v1+1, (2, 2, 2), 8, 8) and (v2, (2, 2, 2), 8, 8),
(v2 + 1, (2, 2, 2), 8, 8). Figure 12a depicts this setup option
for one array. In every iteration each pointer is used once
without update and once with implicit update by 8.

6.3 VP Setup Alternatives for Data Reorder-
ing

In the previous subsections we described how the VEF can
serve as a “reorder buffer” for data reordering. We conclude
this section by presenting additional alternatives for vector
pointer setup and VEF allocation, and point out the con-
siderations that determine which vector setup will be used
in each case.

Recall that 4 VPs were used for the multiplication instruc-
tions in the complex FIR example. Because these VPs have
the same pattern (2, 2, 2), more VPs (if available) can be
used to eliminate dependencies and produce more regular
code: each VP can be split into two VPs, doubling the im-
plicit update. This is similar in concept to induction variable
expansion. The number of VPs can also be reduced, using
a smaller implicit update, but at the cost of an additional
explicit update. In the example, each iteration can use a
single vpread (instead of vpreadEven and vpreadOdd) set to
(v1, (2, 2, 2), 1,∞), and an explicit update of 7 in every it-
eration (see Figure 12b vs. Figure 12a). These alternatives
demonstrate a tradeoff between the number of VPs that are
used and the number of instructions that are required to
implement the access pattern.

8

for (int i = 0; i < N; i+=8){

y(i,i+2,i+4,i+6) = {0,0,0,0};

y(i+1,i+3,i+5,i+7) = {0,0,0,0};

for (j = 0; j < M; j+=2){

//every tuple accesses either only even or only odd elements

int p = i-j+2M;

y(i,i+2,i+4,i+6) += h(j)*x(p-2, p, p+2, p+4) - h(j+1)*x(p-1, p+1, p+3, p+5);

y(i+1,i+3,i+5,i+7) += h(j)*x(p-1, p+1, p+3, p+5) + h(j+1)*x(p-2, p, p+2, p+4);

}

}

Figure 11: Pseudo-Code for an Unroll-and-Jam Vectorization of Complex FIR

So far we have described how a non-consecutive data ac-
cess can be handled by placing the data consecutively in
the VEF and reading it using VPs which are set up with
non-consecutive access patterns. We refer to these setup
schemes as “reorder-on-read”. A symmetric “reorder-on-
write” alternative is to place the data non-consecutively
into the VEF and read it consecutively. Referring to Fig-
ure 13, the pattern of the vector pointer VPwrite used by
the load is (v0, (δ, 1 − δ, δ), 2, 8), where δ = v1 − v0. In
the general cases of a (d, d, d) pattern with d dividing the
vector length 4, reorder-on-write requires a VEF allocation
of d areas of size 4 each, rather than a single area of size
4d as required by reorder-on-read. Such a disjoint alloca-
tion might be preferred, depending on VEF availability and
wrap-around mechanism restrictions.

The complex FIR example contains temporal and spatial
reuse, where all the vector patterns are identical. There are
cases where several distinct vector patterns are used, all re-
ferring to the same data. One such example involves squar-
ing a matrix, which requires accessing its elements along
rows and along columns. Vector pointers can be used to
implement such multiple accesses efficiently, again without
reordering the data itself.

The eLite compiler considers these VP setup alternatives
as part of its vectorization framework.

7. RANDOM ACCESS PATTERN: THE
VITERBI DECODER

In this section we show how SIMdD supports complicated
access patterns found in the Viterbi algorithm, including an
interleaved pattern and an arbitrary pattern. The source
code for the Viterbi butterfly kernel appears in Figure 5
and the assembly code is shown in Figure 14. The M array
containing the metric update is pre-computed and stored
in the VEF. The size of the M array is 2n, where typical
values for n (such as used in 3G cellular networks) are 2
or 3. The metric array which is kept in memory is con-
stant, and its values depend on the convolutional encoder
parameters. It points to elements in the M array, which
in our implementation correspond to locations in the VEF.
Values of consecutive indices in the metric array are typi-
cally not contiguous, so the selection of the correct element
in SIMD manner is awkward on SIMpD architectures, but
fits perfectly into our SIMdD architecture. Such random ac-
cess patterns emphasize the ability of SIMdD architecture
to efficiently vectorize kernels that would otherwise require
many data shuffling instructions.

;a4 points to metric

ldvpu vp0,8(a4) ;vp0=*a4++

veadd va0,(vp4)u,(vp0)u ;va0=old[2j’]+y,j’++

vesub va1,(vp5)u,(vp0)u ;va1=old[2j+1]-y,j++

vamax va1,va0,vm0 ;va1=max(va0,va1),

;vm0=(va0 >= va1)

mval (vp6)u,va1 ;new[j"]=va1,j"++

Figure 14: Assembly Code for the Viterbi Add-
Compare-Select Kernel

Both oldStates and newStates arrays are kept in the VEF
to reduce the amount of memory transfers. Vector pointer
vp0 points to y, and is set up by loading metric from mem-
ory while disabling autoupdate because it is used twice (see
ldvpu instruction in Figure 14); vp4 is set to point to even
samples in oldStates array:

vp4 = (&oldStates[0], (2, 2, 2), 8,∞).

Similarly, vp5 is set to point to the odd samples:

vp5 = (&oldStates[1], (2, 2, 2), 8,∞).

Vector accumulator va0 holds s0 for 4 iterations of the
scalar loop (scalar expansion), and similarly va1 for s1. vp6
points to samples in newStates array so it is set to

vp6 = (&newStates[0], (1, 1, 1), 4,∞).

The implementation of the trace shift register is also very
important. The Compare-Select is one of the essential oper-
ations in the Viterbi kernel, so a specialized max instruction
is available: in addition to selecting the maximum value, it
also keeps track which of the two operands is larger by set-
ting a bit in a Vector Mask (VM) register. The shift register
is implemented by (unrolling and) register renaming the VM
register elements. Having 8 VM registers of size 4 bits each,
8 butterflies halves are repeated before the entire VM reg-
ister is stored at once. By this method no shift instructions
are performed on the trace register.

Aggressive unrolling of the loop is applied in order to keep
the pipeline full. The code achieves asymptotic efficiency of
1 cycle per butterfly, which is the best one can achieve with
4-way SIMD. The memory traffic is kept minimal because
only the metric array is loaded from memory while the states
are kept in the VEF.

9

The needed VEF size includes array M (8 elements for
n = 3) and the states arrays (512 elements for K = 9).
Memories tend to come in radix-2 sizes, so it is preferred
to squeeze the kernel into VEF of size 512. This can be
achieved by overlaying the last 8 elements of newStates with
the M array, and carefully pipelining the epilog of the kernel.

While the compiler is able to auto-vectorize the viterbi
kernel, it is not able to achieve the same efficiency as the
assembly programmer. The main difficulty for the compiler
in this case is memory disambiguation of the oldStates and
newStates arrays. Recall that the newStates array in one
invocation of the ACS computation serves as the oldStates
array for the next invocation of the ACS computation. This
is achieved in the C code using pointer swapping, which
currently does not allow the compiler to prove that the two
pointers are anti-aliased in each ACS invocation. There-
fore, the compiler is not able to exploit the data reuse be-
tween subsequent ACS computations, and much more mem-
ory traffic is generated as the oldStates and newStates ar-
rays are entirely loaded and stored from/to memory each
time. However, the body of each ACS computation is vec-
torized by the compiler similarly to the scheme described
above.

8. EVALUATION

8.1 SIMdD vs. SIMpD - Pros and Cons
The advantages of the SIMdD architecture are not effec-

tive in benchmarks where data is already aligned, contiguous
and not reused. For example, a kernel that adds together
aligned vectors from memory is perfectly amenable to regu-
lar SIMpD architectures. In such benchmarks our results for
using SIMdD are slightly worse than using SIMpD, because
the former requires more registers to be set in the prolog sec-
tions. This degradation is insignificant in real applications,
because such “summation” kernels are of linear complexity
where performance bottlenecks are usually attributed to sec-
tions of higher complexity, and because prolog code may be
scheduled early (in former kernel epilog) thereby hiding its
latencies.

The SIMdD architecture shines on kernels where the dis-
joint capability and data reuse are really required. Such
kernels include, for example, the Viterbi Decoder and para-
metric data reorder such as ZigZag scan used in many video
codecs. Modern SIMpD processors can cope reasonably well
with stride 2 access patterns (that appear e.g. in complex
arithmetic), but have serious difficulties dealing with arbi-
trary strides. SIMdD architecture can achieve full asymp-
totic efficiency even in such benchmarks — the appropri-
ate execution units are always working, after a short pro-
log. In addition to achieving optimal performance efficiency,
the large amount of data reuse achieved for such kernels re-
duces the memory accesses significantly, thus reducing the
needed power. Beyond the power and performance advan-
tages, such kernels also reflect the programming simplicity
that a SIMdD architecture facilitates.

We are unable to present a quantitative comparison be-
tween SIMdD and SIMpD techniques for cases where data
reorganization is needed, since no SIMpD reorganization
mechanisms (such as permute instructions) are available in
eLite. On the other hand, conducting a meaningful com-
parison between eLite’s SIMdD architecture and some other
SIMpD architecture is problematic, because it will not re-

Name Description
1 rfir-b real FIR filter for a block of outputs
2 xfir-b complex FIR filter for a block of outputs
3 mcc maximum cross correlation
4 mat matrix multiply by vector
5 inter interpolation with up-sampling rate 1:2
6 dec decimation with down-sampling rate 2:1
7 v-sad sum of absolute differences for video applications
8 rfir-1 real FIR filter for a single output
9 gather gather dispersed bits into a vector
10 prod inner product of two vectors
11 eudist euclidian distance of two vectors
12 u-add summation of two unaligned vectors into a third
13 idct 2-D inverse Discrete Cosine Transform

Table 1: Benchmark Description

flect the tradeoffs between SIMpD and SIMdD alone, but
rather the effect of a mixture of parameters. It is beyond
the scope of this paper to quantitatively compare the two
programming models; We are rather interested in under-
standing the qualitative differences between the two mod-
els and consequently the new challenges and opportunities
that SIMdD suggests for SIMD programmers and vectoriz-
ing compilers.

8.2 Experimental Evaluation of the Compiler
In this section we compare the performance of code gen-

erated by the eLite compiler with code optimized for the
eLite architecture independently by expert assembly pro-
grammers, the latter achieving asymptotic efficiency. The
experimental results were generated automatically using a
cycle-accurate eLite simulator and profiler.

Table 1 provides a brief description of the benchmarks we
used.The benchmarks cover a range of access patterns in-
cluding consecutive (eudist), reverse (rfir-1, rfir-b, xfir-b),
unaligned (u-add), strided (xfir-b, dec, inter), and column-
wise (v-sad, idct), and are representative of the main com-
putation kernels in our target application domain.

Figure 15 displays the relative execution time of compiled
codes, normalized to the execution time of hand-optimized
codes. Both the hand-written and the compiler-generated
codes are vectorized using the VEF and the techniques de-
scribed in this paper. The figure displays two results for
the compiler; one, denoted “data fits in VEF” was achieved
under the assumption that the data fits in the VEF, a rea-
sonable assumption in the respective application domain.
The other, “general data size” is without this assumption.
For benchmarks originally tailored to a fixed data size we
do not present the “general data size” result.

For the general data size case, the average increase in ex-
ecution time of compiled vs. hand-optimized codes is 35%,
with an average of 25% difference for single-nested loop ker-
nels and an average of 44% for multi-nested loop kernels.
This is primarily due to the compiler scheduling scheme
which is currently less efficient in exploiting ILP at higher
levels of loop hierarchies. For the case where the data fits
into the VEF, the scheduling is more efficient: the average
performance difference is 15%, with an average of 7.5% for
single-nested and 19% for multi-nested loop kernels.

9. CONCLUSIONS
This paper presents a set of vectorization techniques for

an SIMdD architecture. We show how the novel capabilities
of the architecture can provide low-overhead and efficient

10

rfir-b
xfir-b

inter
dec

idct
v-sad

mcc
mat

rfir-1
prod

eudist
u-add

gather

benchmarks

0

0.5

1

1.5

2

re
la

tiv
e

ex
ec

ut
io

n

general data size data fits in VEF hand-written

Compiled vs. Hand-written

Figure 15: Experimental Results

solutions to the traditionally difficult problems of data re-
ordering, data misalignment, and register renaming. We
also applied these techniques to compiler vectorization and
data reuse optimizations. We demonstrate that the per-
formance of the code generated by a compiler using these
techniques is comparable to hand-optimized code for a set
of “regular” benchmarks representative of the DSP domain,
with overhead below 20%.

By combining novel architecture capabilities with innova-
tive vectorization techniques we showed how data reorga-
nization problems can be solved seamlessly and effectively,
opening new opportunities for dealing with other critical is-
sues of data reuse and efficient scheduling in the context
of SIMD vectorization. This is another major step towards
effective use of SIMD architectures in the DSP domain.

10. ACKNOWLEDGMENTS
We would like to thank Amir Geva for his eLite tools

support, Krishnan Kailas for his contributions to the eLite
compiler, Uzi Shvadron, Jaime Moreno and the world-wide
eLite team for continued discussions.

11. REFERENCES
[1] K. Asanovic and D. Johnson. Torrent architecture

manual. Technical report, ICSI, 1996.

[2] A. J. C. Bik, M. Girkar, P. M. Grey, and X. Tian.
Efficient exploitation of parallelism on Pentium III
and Pentium 4 processor-based systems. Intel

Technology J., February 2001.

[3] David Callahan, S. Carr, and K. Kennedy. Improving
register allocation for subscripted variables. In PLDI,
pages 53–65, June 1990.

[4] William Y. Chen, R. Bringmann, S. A. Mahlke, R. E.
Hank, and J. E. Sicolo. An efficient architecture for
loop based data preloading. In Micro, 1992.

[5] Keith Cooper, Ken Kennedy, and Nathaniel McIntosh.
Cross-loop reuse analysis and its application to cache
optimizations. In Ninth Workshop on Languages and

Compilers for Parallel Computing, August 1996.

[6] Jesus Corbal, Roger Espasa, and Mateo Valero.
Exploiting a new level of DLP in multimedia
applications. In Intl. Symposium on Microarchitecture,
pages 72–, 1999.

[7] Paul D’Arcy and Scott Beach. StarCore SC140: A
new DSP architecture for portable devices. In Wireless

Symposium. Motorola, September 1999.

[8] K. Diefendorff and P. K. Dubey et al. Altivec
extension to PowerPC accelerates media processing.
IEEE Micro, March-April 2000.

[9] Gautam Dohsi, Rakesh Krishnaiyer, and Kalyan
Muthukumar. Optimizing software data prefetches
with rotating registers. In PACT, pages 257–267, 2001.

[10] Texas Instruments. www.ti.com/sc/c6x, 2000.

[11] M. Kandemir, I. Kadayif, A. Choudhary, and J. A.
Zambreno. Optimizing inter-nest data locality. In
PACT, pages 127–135, 2002.

[12] Andreas Krall and Sylvain Lelait. Compilation
techniques for multimedia processors. Intl. J. of

Parallel Programming, 28(4):347–361, 2000.

[13] Samuel Larsen, Emmett Witchel, and Saman
Amarasinghe. Techniques for increasing and detecting
memory alignment. Technical Memo 621, MIT LCS,
November 2001.

[14] J. H. Moreno, M. Moudgill, K. Ebcioglu, E. Altman,
B. Hall, R. Miranda, S. K. Chen, and A. Polyak.
Simulation/evaluation environment for a VLIW
processor architecture. IBM Journal of Research and

Development, 41(3):287–302, May 1997.

[15] Jaime H. Moreno, V. Zyuban, U. Shvadron, F. Neeser,
J. Derby, M. Ware, K. Kailas, A. Zaks, A. Geva,
S. Ben-David, S. Asaad, T. Fox, M. Biberstein,
D. Naishlos, and H. Hunter. An innovative low-power
high-performance programmable signal processor for
digital communications. IBM Journal of Research and

Development, March 2003.

[16] Steven S. Muchnick. Advanced Compiler Design and

Implementation. Morgan Kaufmann, 1997.

[17] Huy Nguyen and Lizy Kurian John. Exploiting SIMD
parallelism in DSP and multimedia algorithms using
the AltiVec technology. In Intl. Conf. on

Supercomputing, pages 11–20, 1999.

[18] Preeti Ranjan Panda, Nikil D. Dutt, and Alexandru
Nicolau. Efficient utilization of scratch-pad memory in
embedded processor applications. In European Design

and Test Conf., March 1997.

[19] A. Peleg and U. Weiser. MMX technology extension to
the Intel architecture. IEEE Micro, pages 43–45,
August 1996.

[20] K. Pingali, M. Beck, R. Johnson, M. Moudgill, and
P. Stodghill. Dependence flow graphs: an algebraic
approach to program dependencies. In POPL, pages
67–78, 1991.

[21] Matthew Postiff. Compiler and Microarchitecture

Mechanisms for Exploiting Registers to Improve Memory

Performance. PhD thesis, U. of Michigan, 2001.

[22] Jaewook Shin, Jacqueline Chame, and Mary W. Hall.
Compiler-controlled caching in superword register files
for multimedia extension architectures. In PACT, 2002.

[23] Michael Wolfe. High Performance Compilers for Parallel

Computing. Addison Wesley, 1996.

11

