
1

MMX™ Technology Architecture Overview

Millind Mittal, MAP Group, Santa Clara, Intel Corp.
Alex Peleg, IDC Architecture Group, Israel, Intel Corp.
Uri Weiser, IDC Architecture Group, Israel, Intel Corp.

Index words: MMX™ technology, SIMD, IA compatibility, parallelism, media applications

Abstract

 Media (video, audio, graphics, communication)
applications present a unique opportunity for
performance boost via use of Single Instruction Multiple
Data (SIMD) techniques. While several of the compute-
intensive parts of media applications benefit from SIMD
techniques, a significant portion of the code still is best
suited for general purpose instruction set architectures.
MMX™ technology extends the Intel Architecture (IA),
the industry’s leading general purpose processor
architecture, to provide the benefits of SIMD for media
applications.

MMX technology adopts the SIMD approach in a way
that makes it coexist synergistically and compatibly with
the IA. This makes the technology suitable for providing a
boost for a large number of media applications on the
leading computer platform.

This paper provides insight into the process followed for
the definition of MMX technology and the considerations
used in deciding specifics of MMX technology. It
discusses features that enable MMX technology to be fully
compatible with the existing large application and system
software base for IA processors. The paper also presents
examples that highlight performance benefits of the
technology.

Introduction
Intel’s MMX™ technology [1, 2] is an extension to the
basic Intel Architecture (IA) designed to improve
performance of multimedia and communication
algorithms. The technology includes new instructions and
data types, which achieve new levels of performance for
these algorithms on host processors.

MMX technology exploits the parallelism inherent in
many of these algorithms. Many of these algorithms
exhibit the property of “fixed” computation on a large
data set.

The definition of MMX technology evolved from earlier
work in the i860™ architecture [3]. The i860 architecture
was the industry’s first general purpose processor to
provide support for graphics rendering. The i860
processor provided instructions that operated on multiple
adjacent data operands in parallel, for example, four
adjacent pixels of an image.

After the introduction of the i860 processor, Intel
explored extending the i860 architecture in order to
deliver high performance for other media applications, for
example, image processing, texture mapping, and audio
and video decompression. Several of these algorithms
naturally lent themselves to SIMD processing. This effort
laid the foundation for similar support for Intel’s
mainstream general purpose architecture, IA.

The MMX technology extension was the first major
addition to the instruction set since the Intel386™
architecture. Given the large installed software base for
the IA, a significant extension to the architecture required
special attention to backward compatibility and design
issues.

MMX technology provides benefits to the end user by
improving the performance of multimedia-rich
applications by a factor of 1.5x to 2x, and improving the
performance of key kernels by a factor of 4x on the host
processor. MMX technology also provides benefits to
software vendors by enabling new multimedia-rich
applications for a general purpose processor with an
established customer base. Additionally, MMX
technology provides an integrated software development
environment for software vendors for media applications.

This paper provides insight into the process and
considerations used to define the MMX technology. It
also provides specifics on MMX instructions that were
added to the IA as well as the approach taken to add this
significant capability without adding a new software-
visible architectural state.

Intel Technology Journal Q3 ‘97

2

The paper also presents application examples that show
the usage and benefits of MMX instructions. Data
showing the performance benefits for the applications is
also presented.

Definition Process
MMX technology’s definition process was an outstanding
adventure for its participants, a path with many twists and
turns. It was a bottom-up process. Engineering input and
managerial drive made MMX technology happen.

The definition of MMX technology was guided by a clear
set of priorities and goals set forth by the definition team.
Priority number one was to substantially improve the
performance of multimedia, communications, and
emerging Internet applications. Although targeted at this
market, any application that has execution constructs that
fit the SIMD architecture paradigm can enjoy substantial
performance speed-ups from the technology.

It was also imperative that processors with MMX
technology retain backward compatibility with existing
software, both operating systems and applications. The
addition of MMX technology to the IA processor family
had to be seamless, having no compatibility or negative
performance effect on all existing IA software or
operating systems. Applications that use MMX
technology had to run on any existing IA operating
systems without having to make any operating system
modifications whatsoever and coexist in a seamless way
with the existing IA application base. For example, any
existing version of an operating system (i.e., Windows
NT) would have to run without modifications. New
applications that use MMX technology together with
existing IA applications would also have to run without
modifications on a processor with MMX technology.

The key principle that allowed compatibility to be
maintained was that MMX technology was defined to map
inside the existing IA floating-point architecture and
registers [4]. Since existing operating systems and
applications already knew how to deal with the IA
floating-point (FP) state, mapping the MMX technology
inside the floating-point architecture was a clean way to
add SIMD without adding any new architectural state.
The operating system does not need to know if an
application is using MMX technology. Existing
techniques to perform multiprocessing (sharing execution
time among multiple applications by frequently switching
among them) would take care of any application with
MMX technology.

Another important guideline that we followed was to make
it possible for application developers to easily migrate
their applications to use MMX technology. Realizing that
IA processors with and without MMX technology would

be on the market for some time, we wanted to make sure
that migration would not become a problem for software
developers. By enabling a software program to detect the
presence of MMX technology during run time, a software
developer need develop only one version of an application
that can run both on newer processors that support MMX
technology and older ones which do not. When reaching a
point in the execution of a program where a code
sequence enhanced with MMX instructions can boost
performance, the program checks to see if MMX
technology is supported and executes the new code
sequence. On older processors without MMX technology,
a different code sequence would be executed. This calls
for duplication of some key application code sequences,
but our experience showed it to average less than 10%
growth in program size.

We wanted to keep MMX technology simple so that it
would not depend on any complex implementation which
would not scale easily with future advanced
microarchitecture techniques and increasing processor
frequencies, thus making it a burden on the future. We
made sure MMX technology would add a minimal amount
of incremental die area, making it practical to incorporate
MMX technology into all future Intel microprocessors.

We also wanted to keep MMX technology general enough
so that it would support new algorithms or changes to
existing ones. As a result, we avoided algorithm-specific
solutions, sometimes sacrificing potential performance but
avoiding the risk of having to support features in the
future if they become redundant.

The decision of whether to add specific instructions was
based on a cost-benefit analysis for a large set of existing
and futuristic applications in the area of multimedia and
communications. These applications included MPEG1/2
video, music synthesis, speech compression, speech
recognition, image processing, 3D graphics in games,
video conferencing, modem, and audio applications. The
definition team also met with external software developers
of emerging multimedia applications to understand what
they needed from a new Intel Architecture processor to
enhance their products. Applications were collected from
different sources, and in some cases where no application
was readily available, we developed our own.
Applications we collected were broken down to reveal
that, in most cases, they were built out of a few key
compute-intensive routines where the application spends
most of its execution time. These key routines were then
analyzed in detail using advanced computer-aided
profiling tools. Based on these studies, we found that key
code sequences had the following common characteristics:

� Small, native data types (for example, 8-bit pixels,
16-bit audio samples)

Intel Technology Journal Q3 ‘97

3

� Regular and recurring memory access patterns

� Localized, recurring operations performed on the data

� Compute-intensive

 This common behavior enabled us to come up with MMX
technology, which is a solution that supports well a wide
variety of applications from different domains.

 Basic Concepts
 Our observations of multimedia and communications
applications pointed us in the direction of an architecture
that would enable exploiting the parallelism noted in our
studies.

 Beyond the obvious performance enhancement potential
gained by packing relatively small data elements (8 and 16
bits) together and operating on them in parallel, this kind
of packing also naturally enables utilizing wide data paths
and execution capabilities of state-of-the-art processors.

 An efficient solution for media applications necessitates
addressing some concepts that are fundamental to the
SIMD approach and multimedia applications:

� Packed data format

� Conditional execution

� Saturating arithmetic vs. wrap-around arithmetic

� Fixed-point arithmetic

� Repositioning data elements within packed data
format

� Data alignment

 Packed Data Format
 MMX technology defines new register formats for data
representation. The key feature of multimedia applications
is that the typical data size of operands is small. Most of
the data operands’ sizes are either a byte or a word (16
bits). Also, multimedia processing typically involves
performing the same computation on a large number of
adjacent data elements. These two properties lend
themselves to the use of SIMD computation.

 One question to answer when defining the SIMD
computation model is the width or the data type for SIMD
instructions. How many elements of data should we
operate on in parallel? The answer depends on the
characteristics of the natural organization and alignment
of the data for targeted applications and design
considerations. For example, for a motion estimation
algorithm, data is naturally organized in 16 rows, with
each row containing only 16 bytes of data. In this case,
operating on more than 16 data elements at a time will

require reformatting the input data. Design considerations
involve issues such as the practical width of the data path
and how many times functional units will replicate.

 Given that current Intel processors already have 64-bit
data paths (for example, floating-point data paths, as well
as a data path between the integer register file and
memory subsystem due to dual load/store capability in the
Pentium

®
 processor), we chose the width of MMX data

types to be 64 bits.

 Conditional Execution
 Operating on multiple data operands using a single
instruction presents an interesting issue. What happens
when a computation is only done if the operand value
passes some conditional check? For example, in an
absolute value calculation, only if the number is already
negative do we perform a 2’s complement on it:

 for I = 1, 100
 if a[i] < 0 then b[i] = - a[i] else b[i] = a[i]
 ; Absolute value calculation

 There are different approaches possible, and some are
simpler than others. Using a branch approach does not
work well for two reasons: first, a branch-based solution is
slower because of the inherent branch misprediction
penalty, and second, because of the need to convert
packed data types to scalars.

 Direct conditional execution support does not work well
for the IA since it requires three independent operands
(source, source/destination, and predicate vector).
Keeping with the philosophy of performance and
simplicity, we chose a simpler solution. The basic idea
was to convert a conditional execution into a conditional
assignment. Conditional assignment in turn can be
implemented through different approaches. One approach
would be to provide the flexibility of specifying a
dynamically generated mask with an assignment
instruction. Such an approach would have required
defining instructions with three operands (source,
source/destination, and mask). Here also, we adopted a
solution that is more amenable to higher performance
designs.

 Compare operations in MMX technology result in a bit
mask corresponding to the length of the operands. For
example, a compare operation operating on packed byte
operands produce byte-wide masks. These masks then can
be used in conjunction with logical operations to achieve
conditional assignment. Consider the following example:

 If True

 Ra := Rb else Ra := Rc

Intel Technology Journal Q3 ‘97

4

 Let us say register Rx contains all 1’s if the condition is
true and all 0’s if the condition is false. Then we can
compute Ra with the following logical expression:

 Ra = (Rb AND Rx) OR (Rc ANDNOT Rx)

 This approach works for operations with a register as the
destination. Conditional assignment to memory can be
implemented as a sequence of load, conditional
assignment, and store. We rejected more efficient support
for conditional stores for two reasons: first, the support
requires three source operands, which does not map well
to high-performance architectures, and second, the benefit
of such support is dependent on support from the platform
for efficient partial transfers.

 The MMX instruction set contains a packed compare
instruction that generates a bit mask, enabling data-
dependent calculations to be executed without branch
instructions and to be executed on several data elements in
parallel. The bit mask result of the packed compare
instruction has all 1’s in elements where the relation tested
for is true and all 0’s otherwise (see Figure 1).

Surround_color Surround_color Surround_color Surround_color

a3 a2 a1 a0

000...00 111...11 000...00 111...11

= = = =

 Figure 1. Packed Equal on Word Data Type

 Saturating Arithmetic
 Operand sizes typically used in multimedia are small (for
example, 8 bits for representing a color component). An
8-bit number allows only 256 different shades of a color
to be displayed. While this resolution is more than enough
for what the eye can see, it presents us with a problem in
computation. Given only an 8-bit representation, the
accumulation of color values of a large number of pixels
is likely to exceed the maximum value that can be
represented by the 8-bit number. In the default
computational model, if the addition of two numbers
results in a value that is more than the maximum value
that can be represented by the destination operand, a
wrapped-around value is stored in the destination. If an
application cared to safeguard against such a possibility,
then it has to explicitly examine for an occurrence of an
overflow.

 In media applications, typically the desired behavior is to
provide not the wrap-around value but the maximum value
as the result. MMX technology provides an option to the
application program, which determines whether a wrap-

around result or maximum result is provided in case of an
overflow.

 There may be cases where an application wants to
examine the occurrence of an overflow in a computation.
Providing a flag to indicate this (i.e., indicating whether or
not the value was saturated) would have been desirable.
However, we decided against providing this flag, since we
did not want to add any additional new states to the
architecture to preserve the backward compatibility. Our
analysis also showed that it was not critical to provide this
information in most applications. If needed, an application
can determine if saturation was encountered by comparing
the result of a computation with the maximum and
minimum value; typically, saturation is the correct
behavior.

 Fixed-Point Arithmetic
 Media applications involve working on fraction values,
for example, the use of a weighting coefficient in filtering
averaging, etc. One way to support operations on fraction
values is to provide SIMD operations for floating-point
operands. However, floating-point units are hardware-
intensive. Also, for several media applications, even
precision of 10 to 12 binary bits and dynamic range of 4
to 6 bits are sufficient. Industry-standard floating-point
(IEEE FP) requires a minimum of 23 bits of precision.
Looking at application requirements and the trade-off of
performance and design complexity leads to the use of a
fixed-point arithmetic paradigm for several media
applications. Note that some of the computations may still
require the dynamic range and the precision supported by
IEEE floating-point, for example, geometry
transformation for state-of-the-art 3D applications.

 In fixed-point computation, from the point of view of the
processor architecture, computations are done on integer
values, but programmer/applications interpret the integer
values as fraction values. Some number of leading bits
(determined by the application) are interpreted as an
integer, while the remaining bits of the value are
interpreted as a fraction. It is the application’s
responsibility to perform appropriate shifts in order to
scale the number.

 Repositioning of Data Elements Within Packed
Data Format
 The packed data format presents one other issue. There
are several cases where elements of packed data may be
required to be repositioned within the packed data, or the
elements of two packed data operands may need to be
merged. There are cases where either input or the desired
output representation of a data may not be ideal for
maximizing computation throughput. For example, it may
be preferable to compute on color components of a pixel

Intel Technology Journal Q3 ‘97

5

in “planar format” while the input may be in “packed
format.”

 There are also situations where one needs to perform
intermediate computations in wider format (perhaps
packed word format), while the result is presented in
packed byte format.

 In the above cases, there is a need to extract some
elements of a packed data type and write them into a
different position in the packed result.

 One general solution to this issue is to provide an
instruction that takes two packed data operands and allows
merging of their bytes in any arbitrary order into the
destination packed data operand. However, such a general
solution is expensive to implement. This solution
essentially will require a full cross bar connection.

 In the MMX technology architecture, we defined an
instruction that requires a relatively easy swizzle network
and yet allows the efficient repositioning and combining
of elements from packed data operands in most cases.

 The instruction unpack takes two packed data operands
and merges them as shown in Figure 2.

Unpack high words into doublewords

b0b1 a0a1

b1 b0b3 b2 a1 a0a3 a2

b2b3 a2a3

a1 a0a3 a2b1 b0b3 b2

Unpack low words into doublewords

 Figure 2. MMX Technology Unpacked Instruction

 The unpack instruction can be used for a variety of
efficient repositioning of data elements, including data
replication, within packed data. For example, consider
converting a color representation from packed form (i.e.,
for each pixel, four consecutive bytes represent R, G, B,
and Alpha values) to planar format (i.e., four consecutive
bytes represent the red component of four consecutive
pixels).

 Data Alignment
 Use of packed data also presents data alignment issues. In
some cases, the data may be aligned on its natural
boundary and not on the size of the packed data operand.
For example, in a motion estimation routine, the 16x16
block is aligned at an arbitrary byte boundary and not at a
64-bit boundary. Therefore, in some cases, there is a need

to support efficient access of unaligned data for media
applications. One approach is to support unaligned
accesses directly in hardware, which generally does not
work well with the high-performance cache design.
Alternatively, one can limit memory accesses to aligned
data and extract out the desired data from the accessed
data using explicit instructions.

 MMX technology includes logical shift-left and shift-right
operations on 64 bits. These instructions enable using a
sequence of Shift left, Shift right, and Or operations to
assemble the desired byte from the aligned data that
encompasses the desired bytes.

 Features
 MMX technology features include:

� New data types built by packing independent small
data elements together into one register.

� An enhanced instruction set that operates on all
independent data elements in a register, using a
parallel SIMD fashion.

� New 64-bit MMX registers that are mapped on the IA
floating-point registers.

� Full IA compatibility.

 New Data Types
 MMX technology introduces four new data types: three
packed data types and a new 64-bit entity. Each element
within the packed data types is an independent fixed-point
integer. The architecture does not specify the place of the
fixed point within the elements, because it is the user’s
responsibility to control its place within each element
throughout the calculation. This adds a burden on the user,
but it also leaves a large amount of flexibility to choose
and change the precision of fixed-point numbers during
the course of the application in order to fully control the
dynamic range of values.

 The following four data types are defined (see Figure 3):

� Packed byte 8 bytes packed into 64 bits

� Packed word 4 words packed into 64 bits

� Packed doubleword 2 doublewords packed into
 64 bits

� Packed quadword 64 bits

Intel Technology Journal Q3 ‘97

6

0015156363 1616

006363 31313232

006363

00776363 88
Packed Byte: 8 bytes packed into 64 bits

Packed Word: 4 words packed into 64 bits

Packed Doubleword: 2 doublewords packed into 64 bits

Packed Quadword: One 64 bit quantity

 Figure 3. MMX Technology Packed Data Types

 Enhanced Instruction Set
 MMX technology defines a rich set of instructions that
perform parallel operations on multiple data elements
packed into 64 bits (8x8-bit, 4x16-bit, or 2x32-bit fixed-
point integer data elements). We view the MMX
technology instruction set as an extension of the basic
operations one would perform on a single datum in the
SIMD domain. Instructions that operate on packed bytes
were defined to support frequent image operations that
involve 8-bit pixels or one of the 8-bit color components
of 24/32-bit pixels (Red, Green, Blue, Alpha channel). We
defined full support for packed word (16-bit) data types.
This is because we found 16-bit data to be a frequent data
type in many multimedia algorithms (e.g., MODEM,
Audio) and serves as the higher precision backup for
operations on byte data. A basic instruction set is provided
for packed doubleword data types to support operations
that need intermediate higher precision than 16 bits and a
variety of 3D graphics algorithms. Because MMX
technology is a 64-bit capability, new instructions to
support 64 bits were added, such as 64-bit memory moves
or 64-bit logical operations.

 Overall, 57 new MMX instructions were added to the
Intel Architecture instruction set.

 The MMX instructions vary from one another by a few
characteristics. The first is the data type on which they
operate. Instructions are supplied to do the same
operation on different data types. There are also
instructions for both signed and unsigned arithmetic.

 MMX technology supports saturation on packed add,
subtract, and data type conversion instructions. This
facilitates a quick way to ensure that values stay within a
given range, which is a frequent need in multimedia
operations. In most cases, it is more important to save the
execution time spent on checking if a value exceeds a
certain range than worry about the inaccuracy introduced
by clamping values to minimum or maximum range
values. Saturation is not a mode activated by setting a
control bit but is determined by the instruction itself.
Some instructions have saturation as part of their
operation.

 MMX technology added data type conversion instructions
to address the need to convert between the new data types
and to enable some intermediate calculations to have more
bits available for extended precision. Also, many
algorithms used in multimedia and communications
applications perform multiply-accumulate computations.
MMX technology addressed this with a special multiply-
add instruction.

 MMX instructions were defined to be scalable to higher
frequencies and newer advanced microarchitectures. We
made them fast. All MMX instructions with the exception
of the multiply instructions execute in one cycle both on
the Pentium processor with MMX technology and on the
Pentium® II processor. The multiply instructions have an
execution latency of three cycles, but the multiply unit’s
pipelined design enables a new multiply instruction to
start every cycle. With the appropriate software loop
unrolling, a throughput of one cycle per SIMD multiply is
achievable.

 MMX instructions are non-privileged instructions and can
be used by any software, applications, libraries, drivers, or
operating systems.

 Table 1 summarizes the instructions introduced by MMX
technology:

Intel Technology Journal Q3 ‘97

7

 Opcode Options Cycle Count Description

 PADD[B/W/D]

 PSUB[B/W/D]

 Wrap-around,
and saturate

 1 Packed eight bytes (b), four 16-bit words (w), or two 32-bit
doublewords (d) are added or subtracted in parallel.

 PCMPEQ[B/W/D]

 PCMPGT[B/W/D]

 Equal or
Greater than

 1 Packed eight bytes (b), four 16-bit words (w), or two 32-bit (d)
elements are compared in parallel. Result is mask of 1’s if true

or 0’s if false.

 PMULLW

 PMULHW

 Result is high-
or low-order

bits

 latency: 3

 throughput: 1

 Packed four signed 16-bit words are multiplied in parallel. Low-
order or high-order 16-bits of the 32-bit result are chosen.

 PMADDWD Word to
doubleword
conversion

 latency: 3

 throughput: 1

 Packed four signed 16-bit words are multiplied and adjacent
pairs of 32 results are added together, in parallel. Result is a

doubleword.

 PSRA[W/D]

 PSLL[W/D/Q]

 PSRL[W/D/Q]

 Shift count in
register or
immediate

 1 Packed four words, two doublewords, or the full 64-bits -
quadword (q) are shifted arithmetic right, logical right and left,

in parallel.

 PUNPCKL[BW/WD/DQ]

 PUNPCKH[BW/WD/DQ]

 1 Packed eight bytes (b), four 16-bit words (w), or two 32-bit
doublewords (d) are merged with interleaving.

 PACKSS[WB/DW] Always
saturate

 1 Doublewords are packed to words or words are packed to
bytes in parallel.

 PLOGICALS 1 Bitwise and, or, xor, andnot.

 MOV[D/Q] 1 (if data in cache) Moves 32 or 64 bits to and from memory to MMX registers, or
between MMX registers. 32-bits can be moved between MMX

and integer registers.

 EMMS Varies by
implementation

 Empty FP register tag bits.

 Table 1 lists all the MMX instructions. If an instruction supports multiple data types (byte (b), word (w),
doubleword (d), or quadword (q)), the data types are listed in brackets.

 64-Bit MMX Registers
 MMX technology provides eight new 64-bit general
purpose registers that are mapped on the floating-point
registers. Each can be directly addressed within the
assembly by designating the register names MM0 - MM7
in MMX instructions. MMX registers are random access
registers, that is, they are not accessed via a stack model
like the floating-point registers. MMX registers are used
for holding MMX data only. MMX instructions that
specify a memory operand use the IA integer registers to
address that operand. As the MMX registers are mapped
over the floating-point registers, applications that use
MMX technology have 16 registers to use. Eight are the
MMX registers, each 64 bits in size that hold packed data,
and eight are integer registers, which can be used for
different operations like addressing, loop control, or any
other data manipulation. MMX data values reside in the
low order 64 bits (the mantissa) of the IA 80-bit floating-
point registers (see Figure 4).

Intel Technology Journal Q3 ‘97

8

F lo a t in g - P o in t
R e g is t e r s

M M X
R e g is t e r s

06 38 0
F P ta g

M M 7

M M 6

M M 5

M M 4

M M 3

M M 2

M M 1

M M 0

06 3

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

 Figure 4. Mapping of MMX Registers to Floating-Point Registers

 The exponent field of the corresponding floating-point
register (bits 64-78) and the sign bit (bit 79) are set to
ones (1’s), making the value in the register a NaN (Not a
Number) or infinity when viewed as a floating-point
value. This helps to reduce confusion by ensuring that an
MMX data value will not look like a valid floating-point
value. MMX instructions only access the low-order 64
bits of the floating-point registers and are not affected by
the fact that they operate on invalid floating-point values.

 The dual usage of the floating-point registers does not
preclude applications from using both MMX code and
floating-point code. Inside the application, the MMX code
and floating-point code should be encapsulated in separate
code sequences. After one sequence completes, the
floating-point state is reset and the next sequence can
start. The need to use floating-point data and MMX
(fixed-point integer) data at the same time is infrequent.
At a given time in an application, data being operated
upon is usually of one type. This enabled us to use the
floating-point registers to store the MMX technology
values and achieve our full backward compatibility goal.

 Preserving Full Backward Compatibility
 One of the important requirements for MMX technology
was to enable use of MMX instructions in applications
without requiring any changes in the IA system software.

 An additional requirement was that an application should
be able to utilize performance benefits of MMX
technology in a seamless fashion, i.e., it should be able to
employ MMX instructions in part of the application,

without requiring the whole of the application to be MMX
technology-aware.

 Primary backward compatibility requirements and their
implications are:

� Applications using MMX instructions should work on
all existing multitasking and non-multitasking
operating systems.

 This requires that MMX technology should not add
any new architecturally visible states or events
(exceptions).

� Existing applications that do not use MMX
instructions should run unchanged.

 This requires that MMX technology should not
redefine the behavior of any existing IA 32-bit
instructions. Only those undefined opcodes that are
not relied on for causing illegal exceptions by
existing software should be used to define MMX
instructions.

 Also, MMX instructions should only affect the IA 32-
bit state when in use.

� Existing applications should be able to utilize MMX
technology without being required to make the whole
application MMX technology-aware. It should be
possible to employ MMX instructions within a
procedure in an existing application without requiring
any changes in the rest of the application.

 This requires that MMX instructions work well
within the context of existing IA calling conventions
for procedure calls.

� It should be possible to run an application even in an
older generation of processors that does not support
MMX technology.

 Using dynamically linked libraries (DLLs) for MMX
and non-MMX technology processors is an easy way
to do this.

� MMX instructions should be semantically compatible
with other IA instructions, i.e., it should be easy to
support new MMX instructions in existing
assemblers. They should also have minimal impact on
the instruction decoder. Another aspect of this is that
MMX instructions should not require programmers to
think in new ways regarding the basic behavior of
instructions. For example, addressing modes and the
availability of operations with memory should
conceptually work the same.

Intel Technology Journal Q3 ‘97

9

 The behavior of the prefix overrides should also be
consistent with the IA.

 No New State
 The MMX technology state overlaps with the Floating-
Point state. Overlapping the MMX state with the FP stack
presented an interesting challenge. For performance
reasons as well as for ease of implementation for some
microarchitectures, we wanted to allow the accessing of
the MMX registers in a flat register model. We needed to
enable overlapping MMX registers with the FP stack
while still allowing a flat register access model for MMX
instructions. This was accomplished by enforcing a fixed
relationship between the logical and physical registers for
the FP stack, when accessed via MMX instructions.
Additionally, every MMX instruction makes the whole
MMX register file valid. This is different from the
floating-point stack model, where new stack entries are
made valid only if the instruction specifies a “push”
operation.

MMX instructions themselves do not update FP
instruction state registers (for example, FP opcode, FOP,
FP Data selector, FDS, FP IP, FIP, etc.). The FP
instruction state is used only by FP exception handlers.
Since MMX instructions do not create any computation
exceptions, this state is really not meaningful for MMX
instructions. Additionally, not updating these states
eliminates the complexity of maintaining this state for
MMX technology implementations. Therefore, we made a
decision to let the FP instruction state register point to the
last FP instruction executed even though future MMX
instructions will update the FP stack and TAG register.
Eventually, when an FP instruction is executed, all of the
FP instruction state gets updated. Therefore, FP exception
handlers always see consistent FP instruction state.

 No New Exceptions
 MMX instructions can be viewed as new non-IEEE
floating-point instructions that do not generate
computation exceptions. However, similar to FP
instructions, they do report any pending FP exceptions.
For compatibility with existing software, it is critical that
any pending FP exception is reported to the software prior
to execution of any MMX instruction which could update
the FP state.

 At the point of raising the pending FP exception, the FP
exception state still points to the last FP instruction
creating the FP condition. Therefore, the fact that the
exception gets reported by an MMX instruction instead of
an FP instruction is transparent to the FP exception
handler.

 Additional exceptions that are pertinent to MMX
technology are memory exceptions, device-not-available
(DNA - INT7) exceptions, and FP emulation exceptions.

 Handling of memory exceptions, in general, does not
depend on the opcode of the instruction causing the
exception. Therefore, MMX technology exceptions do not
cause a malfunction of any memory access-related
exception handler. Our extensive compatibility
verification validated this further.

 A DNA exception is caused when the TS bit in CR0 is set,
and any other instruction that could modify the FP state is
issued. This includes execution of an MMX instruction
when the TS bit is set. In this case, similar to the FP case,
a DNA exception is invoked. The response of this
exception is to save the FP state and free it up for use by
future FP/MMX instructions. This exception handler also
does not have a use for the opcode of the instruction
causing this exception.

 When the CR0.EM bit is set, a floating-point instruction
causes an FP emulation exception. In this case, instead of
using FP hardware, FP functionality is supported via
software emulation. Since the MMX technology
architecture state overlaps with the FP architecture state,
the issue arises as to the correct behavior for MMX
instructions when the CR0.EM bit is set.

 Causing an emulation exception for MMX instructions
when CR0.EM is set is not the right behavior since the
existing FP emulator does not know about MMX
instructions. Therefore, the first natural choice seemed to
ignore CR0.EM for MMX technology. However, this
choice has a problem. Ignoring CR0.EM for MMX
instructions would result in two separate contexts for the
FP Stack and TAG words: one context in the emulator
memory for FP and one context in the hardware for MMX
instructions. This leads to an architectural inconsistency
between the cases when CR0.EM is set and when it is not
set.

 We had to find some other logical way to deal with this
without defining any new exceptions. We chose to define
the CR0.EM = 1 case to result in an illegal opcode
exception. Thus, essentially when CR0.EM is set, the
MMX technology architecture extension is disabled.

 Choice of Opcodes for MMX Instructions
 The MMX instruction opcodes were chosen after
extensive analysis of the undefined opcode map. We had
to make sure that the available opcodes were really
unused. This required ensuring that no software was
relying on the illegal opcode fault behavior of these
opcodes. Intel was already working with software vendors
to ensure that they relied only on one specific encoding

Intel Technology Journal Q3 ‘97

10

0FFF to cause an illegal opcode fault. Other encoding may
cause an illegal exception fault in future implementations.

 Except for a few cases, we found that software was using
only prescribed encoding for causing a program-
controlled invalid opcode fault.

 Only address prefixes are defined to be meaningful for
MMX instructions. Use of a Repeat, Lock, or Data prefix
is illegal for MMX instructions. The address prefix has
the same behavior as for any other instruction.

 Use of FP DLL Model for MMX Code
 To enable common multimedia applications for
processors with and without MMX technology, we chose
to promote the Dynamic Linked Library (DLL) model as
the primary model to support MMX instructions.

 In the DLL model, depending upon whether the processor
provides MMX technology support in hardware (the
processor CPUID provides this information), the
appropriate version of the media library function is linked
dynamically.

 MMX technology DLLs suggest the same guidelines as
that of FP DLLs. The primary guidelines are:

� At the end of a DLL, leave the floating-point registers
in the correct state for the calling procedure. This
generally means leaving the floating-point stack
empty, unless a procedure has a return value. This
also means that the caller should check for, and
handle, any FP exceptions that it might have
generated. Essentially, the callee should not see an
exception invocation due to an exception result
generated by the caller.

� Do not assume that the floating-point state remains
the same across procedures. The callee can typically
assume that at entry, the FP stack is empty unless
there is some set convention for parameter passing.

Note that nothing in the MMX technology architecture
depends on these guidelines for functional correctness.
MMX technology can be used in any other usage models.

MMX technology provides an instruction to clear all of
FP state with a single instruction (EMMS instruction). If
some DLL is written to return with the FP stack only
partially empty, one needs to use a combination of EMMS
and floating-point loads to create the correct FP stack
state. Clean the state of MMX with EMMS instruction.

Performance Advantage
We will analyze the performance enhancement due to
MMX technology through an example of a matrix-vector

multiplication very much like the one in Figure 5. The
multiply-accumulate (MAC) operation is one of the most
frequent operations in multimedia and communications
applications used in basic mathematical primitives like
matrix multiply and filters.

m10 m11m00 m01

v0 v1v0 v1

* * * *
m12 m13m02 m03

v2 v3v2 v3

* * * *

v0*m10+v1*m11v0*m00+v1*m01 v2*m12+v3*m13v2*m02+v3*m03

Second resultFirst result
Paddd

+

Pmaddwd

Figure 5. MMX Technology Matrix-Vector Multiplication

A multiply-accumulate operation (MAC) is defined as the
product of two operands added to a third operand (the
accumulator). This operation requires two loads (operands
of the multiplication operation), a multiply, and an add (to
the accumulator). MMX technology does not support
three operand instructions; therefore, it does not have a
full MAC capability. On the other hand, the packed
multiply-add instruction (PMADDWD) is defined, which
computes four 16-bit x 16-bit multiplies generating four
32-bit products and does two 32-bit adds (out of the four
needed). A separate packed add doubleword (PADDD)
adds the two 32-bit results of the packed multiply-add to
another MMX register, which is used as an accumulator.

For this performance example, we will assume both input
vectors to be the length of 16 elements, each element in
the vectors being signed 16 bits. Accumulation will be
performed in 32-bit precision. The Pentium processor, for
example, would have to process each of the operations
one at a time in a sequential fashion. This amounts to 32
loads, 16 multiplies, and 15 additions, a total of 63
instructions. Assuming we perform 4 MACs (out of the
16) per iteration, we need to add 12 instructions for loop
control (3 instructions per iteration, increment, compare,
branch), and one instruction for storing the result. The
total is 76 instructions. Assuming all data and instructions
are in the on-chip caches and that exiting the loop will
incur one branch misprediction, the integer assembly
optimized version of this code (utilizing both pipelines)
takes just over 200 cycles on a Pentium processor
microarchitecture. The cycle count is dominated by the
integer multiply being a non-pipelined 11-cycle operation.
Under the same conditions but assuming the data is in a
floating-point format, the floating-point optimized
assembly version executes in 74 cycles. The floating-point
version is faster (assuming the data is in floating-pointing
format) since the floating-point multiply takes three cycles
to execute and is a pipelined unit.

MMX technology, on the other hand, computes four
elements at a time. This reduces the instruction count to
eight loads, four PMADDWD instructions, three PADDD

Intel Technology Journal Q3 ‘97

11

instructions, one store instruction, and three additional
instructions (overhead due to packed data types), totaling
19 instructions. Performing loop unrolling of four
PMADDWD instructions eliminates the need to insert any
loop control instructions. This is because four
PMADDWDs already perform all the 16 required MACs.
The MMX instruction count is four times less than when
using integer or floating-point operations! With the same
assumptions as above on a Pentium processor with MMX
technology, an MMX technology-optimized assembly
version of the code utilizing both pipelines will execute in
only 12 cycles.

Continuing the above example, assume a 16x16 matrix is
multiplied by a 16-element vector. This operation is built
of 16 Vector-Dot-Products (VDP) of length 16. Repeating
the same exercise as before and assuming a loop unrolling
that performs four VDPs each iteration, the regular
Pentium processor code will total 4*(4*76+3) = 1228
instructions. Using MMX technology will require
4*(4*19+3) = 316 instructions. The MMX instruction
count is 3.9 times less than when using regular operations.
The best regular code implementation (floating-point
optimized version) takes just under 1200 cycles to
complete in comparison to 207 cycles for the MMX code
version.

Intel has introduced two processor families with MMX
technology: the Pentium processor with MMX technology
and the Pentium II processor. The performance of both
processors was compared on the Intel Media Benchmark
(IMB) [5,6], which measures the performance of
processors running algorithms found in multimedia
applications. The IMB incorporates audio and video
playback, image processing, wave sample rate conversion,
and 3D geometry. Figure 6 and Table 2 compare the
Pentium processor with MMX technology and the
Pentium II processor against the Pentium processor and
the Pentium® Pro processor.

Figure 6. Intel Media Benchmark Performance
Comparison

Intel Media Benchmark

Performance Comparison

Pentium
processor
200MHz

Pentium
processor
200MHz�
MMX
Technology

Pentium Pro
processor
200MHz�
256KB L2

Pentium II
processor
233MHz�
512KB L2

Pentium II
processor
266MHz�
512Kb L2

Overall 156.00 255.43 194.38 310.40 350.77

Video 155.52 268.70 158.34 271.98 307.24

Image
Processing

159.03 743.92 220.75 1,026.55 1,129.01

3D
Geometry*

161.52 166.44 209.24 247.68 281.61

Audio 149.80 318.90 240.82 395.79 446.72

Pentium processor and Pentium processor with MMX technology are measured with
512K L2 cache

* No MMX� technology code

Table 2. Intel Media Benchmark Performance Comparison -
Breakdown Per Application

Summary
MMX technology implements a high-performance
technique that enhances the performance of Intel
Architecture microprocessors for media applications. The
core algorithms in these applications are compute-
intensive. These algorithms perform operations on a large
amount of data, use small data types, and provide many
opportunities for parallelism. These algorithms are a
natural fit for SIMD architecture. MMX technology
defines a general purpose and easy-to-implement set of
primitives to operate on packed data types.

MMX technology, while delivering performance boost to
media applications, is fully compatible with the existing
application and operating system base.

MMX technology is general by design and can be applied
to a variety of software media problems. Some examples
of this variety were described in this paper. Future media-
related software technologies for use on the Intranet and
Internet should benefit from MMX technology.

Pentium processors with MMX technology provide a
significant performance boost (approximately 4x for some
of the kernels) for media applications.Performance gains
from the technology will scale well with an increased
processor operating frequency and future
microarchitectures.

Acknowledgment/References/Authors
Acknowledgment

Intel Technology Journal Q3 ‘97

12

We would like to thank a large number of architects and
software developers in Intel for their help and support in
the definition process and application analysis. Other
members of the core MMX technology definition team
were David Bistry, Robert Dreyer, Carole Dulong, Steve
Fischer, Andy Glew, Eiichi Kowashi, Koby Gottlieb,
Larry Mennemeier, Mike Keith, and Benny Eitan.

References
[1] A. Peleg, U. Weiser, MMX™ Technology Extension to the

Intel Architecture, IEEE Micro, Vol. 16, No. 4, August
1996, pp. 42-50.

[2] A. Peleg, S. Wilkie, U. Weiser, Intel MMX for Multimedia
PCs, Communications of the ACM, Vol. 40, No. 1, January
1997, pp. 25-38.

[3] Intel Corporate Literature, i860™ Microprocessor Family
Programmers Reference Manual, Order number 240875.
Intel Corporate Literature Sales, 1991.

[4] Pentium
®

 Family User’s Manual, Volume 3: Architecture
and Programming Manual, Order number 241430, Intel
Corporate Literature Sales, Mt. Prospect, IL, 1994.

[5] M. Slater, The Land Beyond Benchmarks, Computer and
Communications OEM Magazine, Vol. 4, No. 31,
September 1996, pp. 64-77.

[6] Intel Media Benchmark URL:
http://pentium.intel.com/procs/perf/icomp/imb.htm

Authors
Millind Mittal is a Staff Computer Architect with the
Microprocessors Division at Intel. He focuses on
emerging architecture issues for Intel processors.

Millind was one of the primary architects of the initial
extension of i860 to include SIMD instructions. Over the
years, he has led and participated in several architecture
definitions, including parts of IA-64 architecture. He was
a member of the MMX technology definition team, with
primary focus on the software model. He has also worked
as a microarchitect for processor projects, and led a team
performing processor microarchitecture research.

Millind received his B. Tech. in EE from the Indian
Institute of Technology in Kanpur, India in 1983 and a
MS in Computer Systems Engineering from RPI in 1985.
His email address is mmittal@ccm.sc.intel.com.

Alex Peleg is a Staff Computer Architect within the Israel
Design Center Architecture group for Intel’s operations at
Haifa, Israel. He is responsible for a team of architects
dealing with the definition of architectures for Intel’s
CPUs.

Alex joined the Intel Israel Haifa Design Center in 1991.
His initial role was as a computer architect working on the
graphics architecture of Intel’s i860 processor as well as
research into multimedia support on future IA processors.
He then led parts of the MMX technology definition team.
He was also instrumental in evaluation of the performance
benefits of the MMX technology for different Intel
processors.

Alex received his BSCS and MSEE degrees from the
Israel Institute of Technology—the Technion (1989,
1991). His email address is apeleg@iil.intel.com.

Uri Weiser received his BSEE and MSEE degrees from
the Technion (1970, 1975) and his Ph.D. CS from the
University of Utah (1981).

Uri joined the Israeli DOD in 1970 to work on super-fast
analog feedback amplifiers. Later Uri worked at National
Semiconductor where he led the design of the NS32532
microprocessor. Since 1988, Uri has been with Intel,
leading various architecture activities such as Pentium
processor feasibility studies, IA roadmaps, Intel’s MMX
technology architecture definition, and IA
microarchitecture research.

Uri is an Intel Fellow and is the Director of Computer
Architecture in Intel's Development Center in Haifa,
Israel. Uri also holds an adjunct Senior Lecturer position
at the Technion and is an Associate Editor of the IEEE
Micro magazine. His email address is uri_weiser@
ccm.idc.intel.com.

