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The huge processing power needed by multimedia applications has led to multi-
media extensions in the instruction set of microprocessors which exploit sub-
word parallelism. Examples of these extended instruction sets are the Visual
Instruction Set of the UltraSPARC processor, the AltiVec instruction set of the
PowerPC processor, the MMX and ISS extensions of the Pentium processors,
and the MAX-2 instruction set of the HP PA-RISC processor. Currently, these
extensions can only be used by programs written in assembly language, through
system libraries or by calling specialized macros in a high-level language. There-
fore, these instructions are not used by most applications. We propose two code
generation techniques to produce native code using these multimedia extensions
for programs written in a high-level language: classical vectorization and vec-
torization by unrolling. Vectorization by unrolling is simpler than classical
vectorization since data dependence analysis is reduced to acyclic control flow
graph analysis. Furthermore, we address the problem of unaligned memory
accesses. This can be handled by both static analysis and dynamic runtime
checking. Preliminary experimental results for a code generator for the
UltraSPARC VIS instruction set show that speedups of up to a factor of 4.8 are
possible, and that vectorization by unrolling is much simpler but as effective as
classical vectorization.
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1. INTRODUCTION

Nowadays multimedia applications requiring high processing power are
widely used. The trend of using multimedia will increase in the future.
Current processors do not have the capabilities for efficient handling of
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multimedia information (such as audio�video data). Therefore, computer
architects try to provide solutions for the fast growing market of media
processing. A very promising solution is the use of special instruction sets
aimed at exploiting the subword parallelism available when handling
specific multimedia data. These special instruction sets can either be
implemented by special processors(1) or existing instruction sets can be
enhanced by a multimedia instruction set. Four widely used processors
currently offer multimedia extensions: the UltraSPARC with the Visual
Instruction Set, (2) the PowerPC with the AltiVec extension, (3) the Pentium
with the MMX extension(4) and the HP PA-RISC with the MAX-2 instruc-
tion set.(5)

The present means for exploiting this new functionality are not yet
satisfactory. Programmers have to code in assembly language, use provided
system libraries or call macros in the high-level code. All these solutions
have drawbacks, among which portability problems and high cost of
software development are the more obvious. A better solution would be to
compile a program coded in a high-level language into multimedia instruc-
tions. The code produced would be more efficient and safe. Furthermore,
the new functionalities of such processors can also improve the performance
of other applications by exploiting their parallelism in a better manner.

The following example illustrates a C implementation of the vector
product, which forms the inner loop of many signal-processing operations:

Using the VIS-instruction set of the UltraSPARC processor four 16-bit
values can be hold in a 64-bit variable (ad4x16 and bd4x16). Two 32-bit
sized result values can be hold in a 64-bit variable (rdh2x32 and rdl2x32).
A rewritten C-program using VIS-instruction macros for the inner loop
(see Fig. 1) can execute the dot vector product 7.5 times faster for an
aligned vector of length 1024. From the complexity of this code it is evident,
that such transformations should be done by the compiler, not by the
programmer.

We are developing a research compiler which translates C source
programs into native code for the SPARC processor exploiting the VIS
instruction set. Our compiler is based on the CoSy compiler generation
framework from ACE. This framework includes a front end with all classical
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Fig. 1. Inner loop of dot product using VIS-macros.

optimizations like constant propagation, common subexpression elimina-
tion, strength reduction, loop invariant code motion and similar techniques
and the BEG(6) code generator�generator with tree pattern matching
instruction selection, graph-coloring register allocation and instruction
scheduling. The extensions for exploiting the VIS instructions are described
in the following sections. Classic vectorization is presented in Section 3,
alignment problems are handled in Section 5 and vectorization by unrolling
is described in Section 6.

2. RELATED WORK

Little published work exists which directly deals with compilation
techniques for multimedia processors. Cheong and Lam have given a pre-
sentation at the second SUIF compiler workshop.(7) The SUIF vectorizer
is used in a two phase source to source optimizer for multimedia instruction
sets. In the first phase parallel loops are identified, and instructions in the
loop bodies are converted to vector instructions working on infinite length
vectors. In the second phase, the vector operations are transformed into
function calls of SPARCs VIS instructions. The article also describes their
approach for handling unaligned load and stores of vectors.

Govindarajan(8) presented an implementation of a vectorizing com-
piler for the MMX extensions of the Pentium processors. The compiler is
based on the SUIF compiler using C source to source translation with
inline assembly instructions. The compiler identifies data parallel sections of
code. It enhances the scope of applications by performing code transforma-
tions like strip mining, scalar expansion, grouping and reduction, loop fission
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and distribution. The compiler prototype gives performance improvements
up to a factor of 7.

Multimedia instruction sets put multiple values in a register and
operate on all values at the same time. Therefore, a multimedia processor
can be viewed either as a VLIW processor with a set of combinable opera-
tions, or as a vector processor with very short vectors.

Work on vector processors took place mainly at the end of the 1980's
and the beginning of the 1990's. Concerning vector processors, Allen and
Kennedy(9) developed global register register allocation techniques for
Fortran90 on vector processors. They used program transformations to
increase data locality and vector operations are modified to be executed
without problem on the processor. The vector operations must be sub-
divided into sections that fit the hardware of the target machine. They
describe sectioning methods like strip mining, sectioning transformations
such as loop reversal, input prefetching, loop splitting, loop interchange
and loop fusion. Prefetching is very useful to optimize data locality as well.

A good introduction into compilation techniques for parallel computing
are the books by Zima(10) and Wolfe.(11) A survey on optimizations tech-
niques suited for vector processors, including the optimizations described
earlier, has been done by Bacon et al.(12)

3. CLASSIC VECTORIZATION

When viewing a multimedia processor as a vector processor with short
fixed length vectors, techniques known from classic vectorization can be
used to generate code for multimedia instructions. In our compiler this is
accomplished in many smaller phases (called engines in CoSy terminology)
executed sequentially.

v loop analysis

v loop normalization

v scalar expansion

v dependence analysis

v vectorization

v alignment management

v strip mining

v constant expansion

v lower iteration space

v lower alignment

v instruction selection and register allocation

350 Krall and Lelait



File: 828J 486905 . By:XX . Date:11:07:00 . Time:15:47 LOP8M. V8.B. Page 01:01
Codes: 2611 Signs: 1925 . Length: 44 pic 2 pts, 186 mm

Loop analysis determines loops and loop normalization adjusts the
iteration count to start at 0 by a step of 1. Scalar expansion transforms a
scalar variable used inside the loop into a vector. Dependence analysis
computes the data dependence graph for a loop. Vectorization transforms
the loop body into vector instructions. Constant expansion changes scalar
constants to vector constants. Alignment management handles unaligned
vector load�stores. Strip mining reduces variable length vectors to word
length vectors. During instruction selection multimedia instructions are
used for the short vector operations and floating point registers are
allocated to the vectors.

3.1. Data Dependence Analysis

The data dependence analysis is based on the Janus system by
Sogno.(13) Janus contains an inequation solver over the integers, to be used
for dependence computing in automatic parallelization. The input to the
solver is a system of linear inequations resulting from the data dependence
problem from loop parallelization. This system represents the set of con-
straints which have to be verified by the variables of the loop. The output
gives information on the data dependence direction vectors which are com-
patible with the input system. The result of the dependence analysis is the
possibly cyclic data dependence graph of the loop.

3.2. Vectorization

Vectorization is done using Allen and Kennedy's algorithm for vector
code generation.(9, 14) Input to vectorization is the loop with its corre-
sponding data dependence graph. The algorithm computes the strongly
connected components in the data dependence graph and recursively
vectorizes the statements if possible. The result is a vectorized loop in inter-
mediate representation with assignments replaced by vector assignments.
The following example demonstrates vectorization of a simple loop.

is transformed into
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3.3. Strip Mining

The Sparc processor can store up to four shorter data values in one
register. Therefore, the vectorized loop using infinite length vectors has to
be transformed using only fixed length vectors by strip mining. The size of
the vector and the number of the elements of the vector depends on the
type of the data. The following example shows strip mining of the previous
vectorized loop using vectors of length four.

is transformed into

3.4. Lowering of the Iteration Space

In order to ease the code generation process, several data are com-
puted and directly attached as attributes to the instructions. An attribute
containing the number of parallel operations, NumOp, is added to the
statement. It helps to choose between single or double precision versions of
VIS instructions. Another attribute, FromType, containing the type of the
array elements of the vector instruction is computed and propagated to the
operators of the instruction. It is used to choose between 16- or 32-bit
versions of the VIS instructions.

Furthermore, to be able to generate partial store instruction, a new
intermediate representation operator, edge, is introduced. It is used for the
left-hand side of vector statements when vectors smaller than the word size
have to be stored. An example is the tail of a big vector which is not a
multiple of the wordsize.

The iteration space itself is removed, because it is not needed anymore
during the code generation process itself (BEG). Let us take the following
example after strip-mining:
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is lowered into:

The vector statement performing the remaining 3 operations outside of
the loop is translated into several instructions. The first one computes a
mask for a partial store instruction. All 4 elements are loaded by the addi-
tion statement, and the addition itself is performed on all 4 elements. The
correct result is achieved by the partial store which writes only 3 elements.

3.5. Code Generation for Conditional Statements

In the case of conditional statements in the loop body, the vectorizer
introduces masks in the iteration space of each vector statement. A vector
comparison producing a mask is generated for each atomic condition. The
atomic masks are combined by logical operations. This mask is then used
immediately as operand of a partial store, or, if the vector assignment
already needed a partial store, the mask is combined with the mask
produced by the edge statement. This final mask is then used by the partial
store. The following loop

is first transformed into the following vector statement:

During the lowering step a vector compare instruction is introduced
which produces a mask. The dependent partial store takes the produced
mask as operand.
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3.6. Instruction Selection and Register Allocation

The code generator-generator BEG is controlled by tree pattern
matching rules which describe the instruction selection. The operators have
attributes which contain the type of the operands. Depending on the
operands rules are selected which either generate scalar code or multimedia
instructions. Vector operands are assigned to floating point registers which
are allocated automatically by the graph coloring register allocator.

4. LOOP TRANSFORMATIONS

Several loop transformations help in vectorizing loops. Vectorization
is simpler if the loop body contains only one assignment statement. Loop
distribution splits a loop with more statements into several loops with one
statement. Loop fusion can then be used to merge these split loops again
into one loop after strip mining has been applied. Sometimes it would be
more useful to vectorize the outer loop in a loop nest. Loop interchange is
then applied to exchange the outer loop with the inner loop.

4.1. Loop Normalization

Loop normalization ensures that the iteration space of the loops is
regular. For a C compiler the lower bounds are set to 0 and the step is set
to 1. The index expressions and the lower bounds are modified accordingly.
The following small loop with lower bound 2

is transformed into:
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4.2. Scalar and Constant Expansion

Scalar expansion is needed when a scalar variable appears in a vector
expression. The scalar variable is copied to each element of a temporary
vector which replaces the scalar variable in the vector expression.

Constant expansion is a ``special case'' of scalar expansion. It is needed
for handling constants in vector statements. In the case of the UltraSPARC
processor, VIS instructions can only handle registers as operands (no
immediate values). Therefore scalar constants are replaced by constant
arrays allocated to registers.

The following loop demonstrates scalar and constant expansion:

The integer constant is replaced by an array access to a constant array
(const) which is initialized in its declaration. The scalar constant c is also
replaced by an array access. Initialization of the array c4 is made just after
the declaration. The size of the new arrays is computed according to the
number of operations performed in parallel. Thus the loop is transformed
into:

5. ALIGNMENT PROBLEMS

The SPARC like all other RISC processors allows loading and storing
of short vectors only if they are aligned correctly (on a 4 byte boundary for
4 byte vectors and on an 8 byte boundary for 8 byte vectors). The VIS
instruction set added instructions for partial load and store and instruc-
tions for merging partial loaded data. Special instruction sequences are
needed to implement an unaligned load (4 instructions) or an unaligned
store (up to 12 instructions).

Due to separate compilation of C and aliasing of pointers static align-
ment analysis is expensive and imprecise.(15) Therefore, the prototype com-
piler includes only a simple analysis which detects arrays declared as static
and aligns them on 8 byte boundaries during the lowering phase.
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If the alignment of accesses cannot be proven statically, dynamic align-
ment checks are inserted into the code. Depending on the result of the
checks either fast vectorized code or slower nonvectorized code is used. The
alignment checker scans all operands of the instructions in the loop body
and��depending on a compiler switch and the number of operands��either
generates a single test with two code versions or a whole tree with 2n&1
code versions (n being the number of operands in the loop).

In the following example two code versions are generated. The condi-
tion includes a test over all operands of the loop.

is transformed into

An unaligned vector load only takes 4 instructions. It makes sense to
optimize loops where one or two vectors are unaligned. If code size is
unimportant (controllable by a compiler switch), different versions for
partially unaligned loops are supported. We do not generate code for
unaligned vectors which are stored to memory. The following example
shows a code tree with 5 different versions for unaligned array accesses.
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6. IMPLEMENTATION OF VECTORIZATION BY
LOOP UNROLLING

The implementation of vectorization by loop unrolling is again done
in a sequence of phases implemented by engines of the CoSy framework.
To keep the development effort of these engines smaller many engines of
the classical vectorization are reused. An example is the engine which does
dependence analysis and computes the data dependence graph. For vec-
torization by unrolling most of the analysis could be done using acyclic
analysis, but reusing the old engines was simpler.

v loop analysis

v compute unrolling degree

v loop unrolling

v dependence analysis

v dependence verification

v generation of vector instructions

v alignment management

v lower iteration space

v lower alignment

v instruction selection and register allocation

The idea of this method is to avoid a costly dependency analysis and
the entire vectorization process. The loop is first unrolled the correct num-
ber of times depending on the type of the operands. In the next example
the loop is unrolled 4 times for short int operands, so that the final
operands fit into the 64-bit registers. Then the loop body is inspected and
acyclic instruction scheduling is performed in order to have all instances of
the same loop instruction grouped together. Then these instances are
replaced by a vector instruction operating directly on the correct number
of instances. The last step is the lowering phase of the former method.

Let us detail this method on a simple example. The first step is to com-
pute the unrolling degree of the loop. This is done by scanning each
operand of the loop body instructions. Depending on their type, the unroll-
ing degree is set to 2 or 4. For instance if they are all 8 or 16-bit data types,
then the loop can be unrolled 4 times, if one of them is a 32-bit data type,
the loop can only be unrolled twice.
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is transformed into

After the loop has been unrolled, a data dependence graph is built to
check the validity of the forthcoming transformations. There should not
exist any true or output dependence between different instances of the
statements of the loop body. Once this has been verified, vector statements
are generated directly by removing all the instructions of the loop body but
the first unrolled iteration, and by converting them into vector statements.

is transformed into

Similar to dynamic alignment checking we are working on dynamic
data dependence checking. If static data dependence analysis does not give
precise results for a possible dependence of load and stores, but gives
enough information about the increment values of the induction variable,
a check for overlapping vector loads�stores can be done before the execu-
tion of the loop. A drawback is that this check is more costly both in run
time and code size than the dynamic alignment check.
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Table I. Line Counts

Line count Line count
Compiler phase (engine) vectorizing unrolling

loop normalization 1252 1252
scalar expansion 510 510
compute unrolling degree �� 218
loop unrolling �� 4485
dependence analysis 11760 11760
dependence verification �� 191
vectorization 12799 237
alignment management 1417 749
strip mining 632 ��
constant expansion 430 430
lower iteration space 691 691
lower alignment 104 104
sum 29595 20627

7. RESULTS

The previous presented algorithms have been implemented in the
CoSy compiler framework and we evaluated both the implementation
complexity and the speedup gained by using multimedia instructions for
short integer data loops.

The complexity has been evaluated counting the number of source
code lines of each engine (see Table I). Classical vectorization has about
one and a half times the number of lines that vectorization by unrolling
has, despite the favoring of classical vectorization by reusing the complex
data analysis engine.

Table II gives the execution times and the speedups for some
benchmark programs. viscc��our compiler which generates VIS multimedia
instructions��is compared with the standard compiler which does not use

Table II. Speedups

Loop body viscc (secs) cc (secs) Speedup

a[i]=b[i]+c[i] 1.07 4.90 4.58
a[i]=b[i] * c[i] 1.77 8.44 4.77
a[i]=b[i]+c[i+1] 1.70 4.72 2.78
if (b[i]>c[i]) 2.29 6.34 3.67

a[i]=b[i]+c[i]
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these instructions. A speedup greater than 4 is possible since the standard
compiler does not unroll the loops and the loop overhead is reduced to one
quarter. The third benchmark shows the speedup which is possible when
one operand is unaligned due to an index variable shift. The last
benchmark shows some speedup for a conditional statement. In that case,
the speedup depends on the distribution of the conditions. In the normal
version, the computation a[i]=b[i]+c[i+1] is only performed if the
test is true. In the vectorized version, this instruction is always executed.
The highest speedup is reached if the test is always true. Both classic
vectorization and vectorization by unrolling produce exactly the same
code. Therefore, only the results for the unrolling vectorizer are presented.

8. CONCLUSIONS

The experimental results show that exploiting the UltraSPARC VIS
instruction set in a code generator gives speedups of up to a factor of 4.8.
Vectorization by unrolling is much simpler but as effective as classical
vectorization.

We are working on vectorization for loop bodies with conditionals and
more than one basic block. For this problem vectorization by unrolling is
much more promising than the classical vectorization.
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