
©
 2

01
4

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns
10. Concurrent and functional programming

PPj-94c

Overview

1. Pure functional programs do not have side-effects :
operands of an operation and arguments of a call
can be evaluated in any order , in particular concurrently

2. Recursive task decomposition can be parallelized according to the
paradigm bag of subtasks

3. Lazy evaluation of lists leads to programs that transform streams , can be
parallelized according the pipelining paradigma

4. Dataflow languages and dataflow machines support stream programming

5. Concurrency notions in functional languages :
Message passing in Erlang
Actors in Scala

©
 2

01
3

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Recursive adaptive quadrature computation
PPj-94d

fun quad (f, l, r, area, eps) =
let m = (r-l)/2 and

fl = f(l) and
fm = f(m) and
fr = f(r) and
larea = (fl+fm)*(m-l)/2 and
rarea = (fm+fr)*(r-m)/2 and

in
if abs(larea+rarea-area)>eps
then
let

lar = quad(f,l,m,larea,eps) and

rar = quad(f,m,r,rarea,eps)

in (lar+rar)
end
else area

end

initial call:

quad (f,a,b,(f(a)+f(b)/2*(b-a),0.001)

f(x)

x

y

a bm =
(b-a)/2

(f(a)+f(m))/2 *

∫
a

b
f(x) dx

(m-a)

Compute an approximation of the
integral over f(x) between a and b.

Recursively refine the interval into
two subintervals until the sum of the
areas of the two trapezoids differs
less than eps from the area of the big
trapezoid .

See [G. Andrews: Foundations of Multithreaded,
Parallel, and Distributed Programming, Addison
Wesley, 2000, pp. 17-19]

©
 2

01
3

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Recursive adaptive quadrature computation
PPj-94e

fun quad (f, l, r, area, eps) =
let m = (r-l)/2 and

fl = f(l) and
fm = f(m) and
fr = f(r) and
larea = (fl+fm)*(m-l)/2 and
rarea = (fm+fr)*(r-m)/2 and

in
if abs(larea+rarea-area)>eps
then
let

co
lar = quad(f,l,m,larea,eps) and
//
rar = quad(f,m,r,rarea,eps)
oc

in (lar+rar)
end
else area

end

initial call:

quad (f,a,b,(f(a)+f(b)/2*(b-a),0.001)

f(x)

x

y

a bm =
(b-a)/2

(f(a)+f(m))/2 *

∫
a

b
f(x) dx

(m-a)

Compute an approximation of the
integral over f(x) between a and b.

Recursively refine the interval into
two subintervals until the sum of the
areas of the two trapezoids differs
less than eps from the area of the big
trapezoid .
Fork two concurrent processes.

See [G. Andrews: Foundations of Multithreaded,
Parallel, and Distributed Programming, Addison
Wesley, 2000, pp. 17-19]

©
 2

01
3

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Streams in functional programming
PPj-94f

Linear lists are fundamental data structures in functional programming, e.g. in SML:

datatype ’a list = nil | :: of ’a * ’a list

Eager evaluation: all elements of a list are to be computed, before any can be accessed.
Lazy evaluation only those elements of a list are computed which are going to be accessed.

That can be achieved by replacing the (pointer to) the tail of the list by a parameterless
function which computes the tail of the sequence when needed :

datatype ’a seq= Nil | Cons of ’a * (unit->’a seq)

Lazy lists are called streams .

Streams establish a useful programming paradigm :
Programming the creation of a stream can be separated from programming its use .

producerconsumer
stream

sequence of numbers
random numbers
iterate approximations
enumerate solutions space

summarize
use random numbers
decide upon convergence
decide upon solution

Functions on streams can be understood as communicating concurrent processes.

©
 2

01
4

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns
Examples for stream functions (1)

PPJ-94g

produce a stream of numbers: int -> int seq
fun from k = Cons (k, fn()=> from (k+1));

consume the first n elements into a list: 'a seq * int -> 'a list
fun take (xq, 0) = []
| take (Nil, n) = raise Empty
| take (Cons(x, xf), n) = x :: take (xf () , n - 1);

transform a stream of numbers: int seq -> int seq
fun squares Nil = Nil
| squares (Cons (x, xf)) = Cons (x * x, fn() => squares (xf()));

take (squares (from 1), 10);

from 1squarestake 10
1 2 3...1 4 9...

©
 2

01
3

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Examples for stream functions (2)
PPJ-94h

add the numbers of two streams: int seq * int seq -> int seq
fun add (Cons(x, xf),Cons(y, yf)) =

Cons (x+y, fn() => add (xf(), yf()))
| add _ = Nil;

from 0

take 10

0 1 2 ...

from 50
50 51 52...

add50 52 54 56...

Filter-Schema:
('a -> bool) -> 'a seq -> 'a seq

fun filter pred Nil = Nil
| filter pred (Cons(x,xf)) =

if pred x then Cons (x, fn()=> filter pred (xf()))
else filter pred (xf());

filter

pred

©
 2

01
3

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Recursive stream composition
PPJ-94i

fun sift p =
filter (fn n => n mod p <> 0);

fun sieve (Cons(p,nf)) =
Cons (p, fn() => sieve (sift p (nf())));

val primes = sieve (from 2);

take (primes, 25);

from

2
hd

tl

siftsieve

primes
hd

tl

sieve:

sift:

eliminate
multiples of p

p

Compute prime
numbers:

Sieve of
Eratosthenes

All recursively constructed sift-sieve-pairs can execute concurrently!

©
 2

01
3

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Sieve of Eratosthenes in CSP
PPj-94j

process Sieve[1]
for [1 = 3 to n by 2]

Sieve[2] ! i # pass odd numbers to Sieve[2]

process Sieve[i = 2 to L]
int p, next
Sieve[i-1] ? p # p is a prime
do Sieve[i-1] ? next -># receive next candidate

if (next mod p)!=0 ->
Sieve[i+1] ! next # pass it on

fi
od

A pipeline of filters:

L processes are created, each sends a stream of numbers to its successor.

The first number p received is a prime. It is used to filter the following numbers.

Finally, each process holds a prime in p.

[G. Andrews: Foundations of Multithreaded, Parallel, and Distributed Programming, Addison Wesley, 2000, pp. 326-328]

©
 2

01
4

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns
Dataflow languages

PPj-94k

Textual languages:

Lucid: stream computations by equations, no side
effects; 1976, Wadge, Ashcroft

SISAL : (Streams and Iteration in a Single
Assignment Language), no side-effects, fine-
grained parallelization by compiler, 1983

Prograph (Acadia University 1983):
dataflow and object-oriented

LabVIEW (National Instruments, 1986) :
Nodes represent stream processing functions
connected by wires, concurrent execution
triggered by available input. Strong support of
interfaces to instrumentation hardware.

Visual languages:

©
 2

01
4

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Language Erlang
PPj-94l

Erlang developed 1986 by Joe Armstrong, et.al at Ericsson

• multi-paradigm: functional and concurrent

• initial application area: telecommunication
requirements: distributed, fault-tolerant, soft-real-time, non-stopping software

• processes communicate via asynchronous message passing

• single-assignment variables, no shared memory between processes

Explanations and examples taken from

[J. Armstrong, R. Virding, C. Wikström, M. Williams: Concurrent Programming in ERLANG, Second
Edition, Ericsson Telecommunications Systems Laboratories, Prentice Hall,1996]

http://www.erlang.org

©
 2

01
4

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Basic communication constructs
PPj-94m

Initial example

A module that creates counter
processes:

-module(counter).
-export([start/0,loop/1]).

start() ->
spawn(counter, loop, [0]).

loop(Val) ->
receive

increment ->
loop(Val + 1)

end.

clients send increment messages to it

process creation:

Pid = spawn(Module, FunctionName, ArgumentList)

asynchonous message send:

Pid ! Message

The operands are expressions which
yield a process id and a message.

selective receive:

receive
Pattern1 [when Guard1] ->

Actions1 ;
Pattern2 [when Guard2] ->

Actions2 ;
...

end

Searches the process’ mailbox for a message
that matches a pattern , and receives it.
Can not block on an unexpected message!

©
 2

01
3

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Complete example: Counter
PPj-94n

-module(counter).
-export([start/0,loop/1,increment/1,value/1,stop/1]).

%% First the interface functions.
start() -> spawn(counter, loop, [0]).

increment(Counter) -> Counter ! increment .

value(Counter) ->
Counter ! { self() ,value} ,
receive {Counter,Value} -> Value

end.

stop(Counter) -> Counter ! stop .

%% The counter loop.
loop(Val) ->

receive increment -> loop (Val + 1);
{From,value} -> From ! {self(),Val},

loop (Val);
stop -> true;
Other -> loop (Val)

end.

Interface
functions are
called by client
processes.

They send 3
kinds of
messages.

self() gives
the client’s pid,
to reply to it.

The counter
process
identifies itself
in the reply.

The receive is
iterated (tail-
recursion).

Unexpected
messages are
removed

©
 2

01
3

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns
Example: Allocation server (interface)

PPj-94o

-module(allocator).
-export([start/1,server/2,allocate/0,free/1]).

start(Resources) ->
Pid = spawn(allocator, server,

[Resources,[]]),
register (resource_alloc, Pid).

% The interface functions.

allocate() -> request(alloc).

free(Resource) -> request({free,Resource}).

request(Request) ->
resource_alloc ! {self(),Request} ,
receive {resource_alloc,Reply} -> Reply

end.

The two lists of free and
allocated resources are
initialized.

register associates the
pid to a name.

The calls of allocate
and free are transformed
into different kinds of
messages. Thus,
implementation details
are not disclosed to
clients.

A server maintains two lists of free and allocated resources. Clients call a function
allocate to request a resource and a function free to return that resource.

©
 2

01
3

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Example: Allocation server (implementation)
PPj-94p

server(Free, Allocated) ->
receive

{From,alloc} ->
s_allocate(Free, Allocated , From);

{From,{free,R}} ->
s_free(Free, Allocated , From, R)

end.

s_allocate([R|Free], Allocated , From) ->
From ! {resource_alloc,{ yes ,R}},
server(Free, [{R,From}|Allocated]);

s_allocate([], Allocated , From) ->
From ! {resource_alloc, no},
server([], Allocated).

s_free(Free, Allocated, From, R) ->
case member({R,From}, Allocated) of

true -> From ! {resource_alloc,ok},
server([R|Free],

delete({R,From},
Allocated));

false ->From ! {resource_alloc,error},
server(Free, Allocated)

end.

The function server
receives the two kinds of
messages and transforms
them into calls of
s_allocate and
s_free .

s_allocate returns yes
and the resource or no,
and updates the two lists
in the recursive server
call.

s_free : member checks
whether the returned
resource R is in the free
list, returns ok and
updates the lists,

or it returns error .

The server call loops.

©
 2

01
3

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Scala: object-oriented and functional language
PPJ-94q

Scala : Object-oriented language (like Java, more compact notation), augmented by
functional constructs (as in SML); object-oriented execution model (Java)

functional constructs:

• nested functions, higher order functions, currying,
case constructs based on pattern matching

• functions on lists, streams,... provided in a big language library

• parametric polymorphism; restricted local type inference

object-oriented constructs:

• classes define all types (types are consequently oo - including basic types), subtyping,
restrictable type parameters, case classes

• object-oriented mixins (traits)

general:

• static typing, parametric polymorphism and subtyping polymorphism

• very compact functional notation

• complex language, and quite complex language description

• compilable and executable together with Java classes

• since 2003, author: Martin Odersky, www.scala.org, docs.scala-lang.org

©
 2

01
4

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Actors in Scala (1)
PPj-94r

An actor is a lightweight process:

• actor { body } creates a
process that executes body

• asynchronous message passing

• send : p ! msg puts msg into p’s
mailbox

• receive operation searches the
mailbox for the first message that
matches one of the case patterns
(as in Erlang)

• case x is a catch-all pattern

[P. Haller, M. Odersky: Actors That Unify
Threads and Events; in A.L. Murphy and J.
Vitek (Eds.): COORDINATION 2007, LNCS
4467, pp. 171–190, 2007. © Springer-
Verlag Berlin Heidelberg 2007]

Example: orders and cancellations

val orderMngr = actor {
while (true)

receive {
case Order(sender, item) =>

val o =
handleOrder(sender,item)

sender ! Ack(o)
case Cancel(sender, o) =>

if (o.pending) {
cancelOrder(o)
sender ! Ack(o)

} else sender ! NoAck
case x => junk += x

}
}

val customer = actor {
orderMngr ! Order(self, myItem)
receive {

case Ack(o) => ...
}

}

©
 2

01
4

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns
Actors in Scala (2)

PPj-94s

Constructs used to simplify replying:

• The sender of a received message
is stored in sender

• reply(msg) sends msg to
sender

• a !? msg sends msg to a, waits
for a reply, and returns it.

[P. Haller, M. Odersky: Actors That Unify
Threads and Events; in A.L. Murphy and J.
Vitek (Eds.): COORDINATION 2007, LNCS
4467, pp. 171–190, 2007. © Springer-
Verlag Berlin Heidelberg 2007]

Example: orders and cancellations

val orderMngr = actor {
while (true)

receive {
case Order(item) =>

val o =
handleOrder(sender ,item)

reply(Ack(o))
case Cancel(o) =>

if (o.pending) {
cancelOrder(o)
reply(Ack(o))

} else reply(NoAck)
case x => junk += x

}
}

val customer = actor {
orderMngr !? Order(myItem)

match {
case Ack(o) => ...

}
}

©
 2

01
3

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

11. Check your knowledge (1)

Introduction

1. Explain the notions: sequential, parallel, interleaved, concurrent execution of processes.

2. How are Threads created in Java (3 steps)?

Properties of Parallel Programs

3. Explain axioms and inference rules in Hoare Logic.

4. What does the weakest precondition wp (s, Q) = P mean?

5. Explain the notions: atomic action, at-most-once property.

6. How is interference between processes defined?

7. How is non-interference between processes proven?

8. Explain techniques to avoid interference between processes.

Monitors

9. Explain how the two kinds of synchronization are used in monitors.

10.Explain the semantics of condition variables and the variants thereof.

11.Which are the 3 reasons why a process may wait for a monitor?

12.How do you implement several conditions with a single condition variable?

PPJ-95
©

 2
01

3
be

i P
ro

f.
D

r.
 U

w
e

K
as

te
ns

Check your knowledge (2)

13.Signal-and-continue requires loops to check waiting-conditions. Why?

14.Explain the properties of monitors in Java.

15.When can notify be used instead of notifyAll?

16.Where does a monitor invariant hold? Where has it to be proven?

17.Explain how monitors are systematically developed in 5 steps.

18.Formulate a monitor invariant for the readers/writers scheme?

19.Explain the development steps for the method „Rendezvous of processes“.

20.How are waiting conditions and release operations inserted when using the method of
counting variables?

Barriers

21.Explain duplication of distance at the example prefix sums.

22.Explain the barrier rule; explain the flag rules.

23.Describe the tree barrier.

24.Describe the symmetric dissemination barrier.

PPJ-95a

©
 2

01
3

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Check your knowledge (3)

Data parallelism

25.Explain how list ends are found in parallel.

26.Show iteration spaces for given loops and vice versa.

27.Explain which dependence vectors may occur in sequential (parallel) loops.

28.Explain the SRP transformations.

29.How are the transformation matrices used?

30.Which transformations can be used to parallelize the inner loop if the dependence vectors
are (0,1) and (1,0)?

31.How are bounds of nested loops described formally?

Asynchronous messages

32.Explain the notion of a channel and its operations.

33.Explain typical channel structures.

34.Explain channel structures for the client/server paradigm.

35.What problem occurs if server processes receive each from several channels?

36.Explain the notion of conversation sequences.

PPJ-96

©
 2

01
3

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns
Check your knowledge (4)

37.Which operations does a node execute when it is part of a broadcast in a net?

38.Which operations does a node execute when it is part of a probe-and-echo?

39.How many messages are sent in a probe-and-echo scheme?

Messages in distributed systems

40.Explain the worker paradigm.

41.Describe the process interface for distributed branch-and-bound.

42.Explain the technique for termination in a ring.

Synchronous messages

43.Compare the fundamental notions of synchronous and asynchronous messages.

44.Explain the constructs for selective wait with synchronous messages.

45.Why are programs based on synchronous messages more compact and less redundant than
those with asynchronous messages?

46.Describe a server for resource allocation according to the scheme for synchronous
messages.

PPJ-97

©
 2

01
3

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Check your knowledge (5)

Concurrent and functional programming

47.Explain why paradigms in functional and concurrent programming match well.

48.What are benefits of stream programming?

49.Compare implementations of the Sieve of Eratosthenes using streams or CSP.

50.Explain concurrency in Erlang, in particular selective receive.

51.Explain the characteristics of Scala, in particular its Actors.

PPJ-98

