
©
 2

01
3

be
i P

ro
f.

 D
r.

 U
w

e
K

as
te

ns
9. Synchronous message passing

PPJ-87

Processes communicate and synchronize directly,
space is provided for only one message (instead of a channel).

Operations:

• send (b): blocks until the partner process is ready to receive the message

• receive (v): blocks until the partner process is ready to send a message.

When both sender and receiver processes are ready for the communication,
the message is transferred, like an assignment v := b;

A send-receive-pair is both data transfer and synchronization point

Origin: Communicating Sequential Processes (CSP) [C.A.R. Hoare, CACM 21, 8, 1978]

sendreceive

v

pq

©
 2

01
3

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Notations for synchronous message passing
PPJ-88

Notation in CSP und Occam:

p: ... q ! ex ... send the value of the expression ex to process q

q: ... p ? v ... receive a value from process p and assign it to variable v

multiple ports and composed messages may be used:

p: ... q ! Port1 (a1,..,an) ...

q: ... p ? Port1 (v1,..,vn) ...

Example : copy data from a producer to a consumer:

Prod: var p: int;
do true -> p :=...; Copy ! p od

Copy: var x: int;
do true -> Prod ? x; Cons ! x od

Cons: var c: int;
do true -> Copy ? c; ... od

Prod

Copy

Cons

x

c

©
 2

01
4

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Selective wait
PPJ-89

Guarded command: (invented by E. W. Dijkstra)
a branch may be taken, if a condition is true and a communication is enabled (guard)

if Condition1; p ! x -> Statement1
[] Condition2; q ? y -> Statement2
[] Condition3; r ? z -> Statement3
fi

A communication statement in a guard yields

true , if the partner process is ready to communicate

false , if the partner process is terminated,

open otherwise (process is not ready, not terminated)

Execution of a guarded command depends on the guards:

• If some guards are true , one of them is chosen,
the communication and the branch statement are executed.

• If all guards are false the guarded command is completed without executing anything.

• Otherwise the process is blocked until one of the above cases holds.

Notation of an indexed selection :

if (i: 1..n) Condition; p[i] ? v -> Statements fi

©
 2

01
4

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Guarded loops
PPJ-90

A guarded loop repeats the execution of its guarded
command until all guards yield false:

do
Condition1; p ! x-> Statement1

[] Condition2; r ? z-> Statement2
od

Example : bounded buffer:

process Buffer
do

cnt < N; Prod ? buf[rear] -> cnt++; rear := rear % N + 1;
[] cnt > 0; Cons ! buf[front] -> cnt--; front := fron t % N + 1;
od

end

process Prod
var p:=0: int;
do p<42; Buffer ! p -> p:=p+1;
od

end

process Cons
var c: int;
do Buffer ? c -> print c;
od

end

©
 2

00
3

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns
Prefix sums computed with synchronous messages

Synchronous communication provides both transfer of data and synchronization.

Necessary synchronization only (cf. synchronous barriers, PPJ-48)

const N := 6; var a [0:N-1] : int;

process Worker (i := 0 to N-1) a process for each element
var d := 1, sum, new: int

sum := a[i];

{ Invariant SUM: sum = a[i-d+1] + ... + a[i]}
do d < N-1 ->

if (i+d) < N -> Worker(i+d) ! sum fi shift old value to the right

if (i-d) >= 0-> Worker(i-d) ? new; sum := sum + new fi
get new value from the left

d := 2*d double the distance
od {SUM and d >= N-1}

end

Why can deadlocks not occur?

PPJ-91

©
 2

01
4

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

No deadlocks in synchronous prefix sums
PPJ-92

sychronization pattern
0

i

N-1

i-d i+d
j-d j

• ! and ? operations occur always in pairs :

if i+d < N and i>=0 process i executes Worker(i+d)!sum
let j = i+d, i.e. j-d = i >= 0, hence process j executes Worker(j-d)?new

• There is always a process that does not send but receives :

Choose i such that i<N and i+d >= N, then process i only receives:
Prove by induction.

• As no process first receives and then sends , there is no deadlock

©
 2

01
4

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Client/Server scheme with synchronous messages

Technique :
for each kind of operation that the server offers, a communication via 2 ports :

• oprReq for transfer of the parameters

• oprRepl for transfer of the reply

Scheme of the client processes :

process Client (I := 1 to N)
...
Server ! oprReq (myArgs)
Server ? oprRepl (myRes)
...

end

Scheme of the server process :

process Server ()
...
do (c: 1..N) ConditionOpr1; Client[c] ? oprReq(oprArgs)

-> process the request ...
Client[c] ! oprRepl(oprResults)

[] correspondingly for other operations ...
od

end

PPJ-93

©
 2

01
4

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Synchronous Client/Server: variants and comparison
PPJ-94

Synchronous servers have the
same characteristics as asynchronous servers ,
i. e. active monitors (PPJ-70).

Variants of synchronous servers :

1. Extension to multiple instances of servers :
use guarded command loops to check
whether a communication is enabled

2. If an operation can not be executed immediately ,
it has to be delayed, and
its arguments have to be stored in a pending queue

3. The reply port can be omitted if
- there is no result returned, and
- the request is never delayed

4. Special case: resource allocation with request and release.

5. Conversation sequences are executed in the part „process the request“.
Conversation protocols are implemented by a
sequence of send, receive, and guarded commands.

©
 2

01
4

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns
Synchronous messages in Occam

PPJ-94a

Occam:

• concurrent programming language, based on CSP

• initially developed in 1983 at INMOS Ltd. as native
language for INMOS Transputer systems

• a program is a nested structure of
parallel processes (PAR), sequential code blocks
(SEQ), guarded commands (ALT), synchronous
send (!) and receive (?) operations, procedures,
imperative statement forms;

• communication via 1:1 channels

• fundamental data types, arrays, records

• extended 2006 to Occam-pi, University of Kent, GB
pi-calculus (Milner et. al, 1999):
formal process calculus where names of channels
can be communicated via channels
Kent Retargetable occam Compiler (KRoC)
(open source)

CHAN OF INT chn:
PAR

SEQ
INT a:
a := 42
chn ! a

SEQ
INT b:
chn ? b
b := b + 1

©
 2

01
4

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Bounded Buffer in Occam
PPJ-94aa

CHAN OF Data in, out :
PAR

SEQ -- process buffer
Queue (k) buf:
Data d:
WHILE TRUE

ALT
in ? d & length(buf) < k

enqueue(buf, d)
out ! front(buf) & length(buf) > 0

! not allowed in a guard
dequeue(buf)

SEQ
-- only one producer process
Data d:
WHILE TRUE

SEQ
d = produce ()
in ! d

SEQ
-- only one consumer process
Data d:
WHILE TRUE

SEQ
out ? d
consume (d)

©
 2

01
4

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Synchronous rendezvous in Ada
PPJ-94b

task type Producer;

task body Producer is
d: Data;

begin
loop

d := produce ();
Buffer.Put (d);

end loop;
end Producer;

task type Consumer;

task body Consumer is
d: Data;

begin
loop

Buffer.Get (d);
consume (d);

end loop;
end Consumer;

Ada:

• general purpose programming language
dedicated for embedded systems

• 1979: Jean Ichbiah at CII-Honeywell-Bull
(Paris) wins a competition of language
proposals initiated by the US DoD

• Ada 83 reference manual

• Ada 95 ISO Standard, including oo constructs

• Ada 2005, extensions

• concurrency notions:
processes (task , task type), shared data,
synchronous communication (rendezvous),
entry operations pass data in both directions,
guarded commands (select , accept)

©
 2

01
4

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Ada: Synchronous rendezvous
PPJ-94ba

task type Producer;

task body Producer is
d: Data;

begin
loop

d := produce ();
Buffer.Put (d);

end loop;
end Producer;

task type Consumer;

task body Consumer is
d: Data;

begin
loop

Buffer.Get (d);
consume (d);

end loop;
end Consumer;

task type Buffer is -- interface
entry Put (d: in Data); -- input port
entry Get (d: out Data); -- output port

end Buffer;

task body Buffer is
buf: Queue (k);
d: Data;

begin
loop

select -- guarded command
when length(buf) < k =>

accept Put (d: in Data) do
enqueue(buf, d);

end Put;
or
when length(buf) > 0 =>

accept Get (d: out Data) do
d := front(buf);

end Get;
dequeue(buf);

end select;
end loop;

end Buffer;

