
7. Asynchronous Message Passing

Processes send and receive messages via channels

Message: value of a composed data type or object of a class

Channel: queue of arbitrary length, containing messages

operations on a channel:

- **send (b)**: adds the message b to the end of the queue of the channel; does **not block** the executing process (in contrast to synchronous send)
- **receive()**: yields the oldest message and deletes it from the channel; **block**s the executing process as long as the channel is empty.
- empty(): yields true, if the channel is empty; the result is not necessarily up-to-date.

send and receive are executed under mutual exclusion.

```
Channels implemented in Java
```

PPJ-61

```
public class Channel
                          // implementation of a channel using a queue of messages
ł
  private Queue msgQueue;
  public Channel ()
      { msgQueue = new Queue (); }
  public synchronized void send (Object msg)
      { msgQueue.enqueue (msg); notify(); } // wake a receiving process
  public synchronized Object receive ()
      { while (msgQueue.empty())
           try { wait(); } catch (InterruptedException e) {}
        Object result = msgQueue.front(); // the queue is not empty
        msqOueue.dequeue();
        return result;
  public boolean empty ()
      { return msgQueue.empty (); }
All waiting processes wait for the same condition = notify() is sufficient.
After a notify-call a new receive-call may have stolen the only message => wait loop is needed
```

PPJ-62

Processes and channels

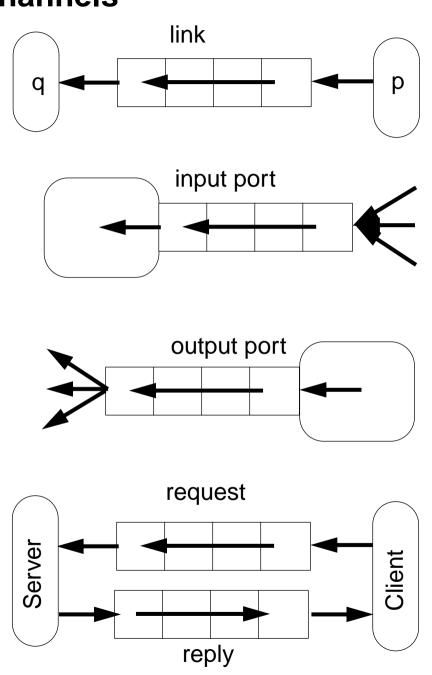
link:

one sender is connected to **one receiver**; e. g. processes form chains of transformation steps (pipeline)

input port of a process:

many senders - one receiver; channel belongs to the receiving process; e. g. a server process receives tasks from several client processes

output port of a process:


one sender - many receivers;

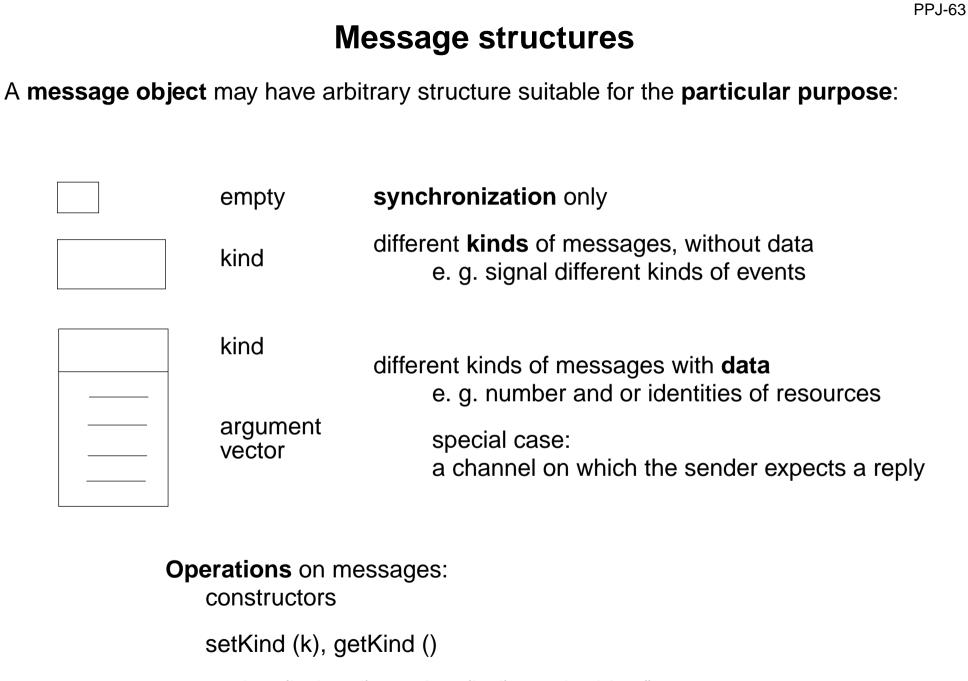
channel belongs to the sending process; e. g. a process distributes tasks to many servers (unusual structure)

pair of request and reply channels;

one process requests - the others replies; tight synchronization,

e.g. between client and server

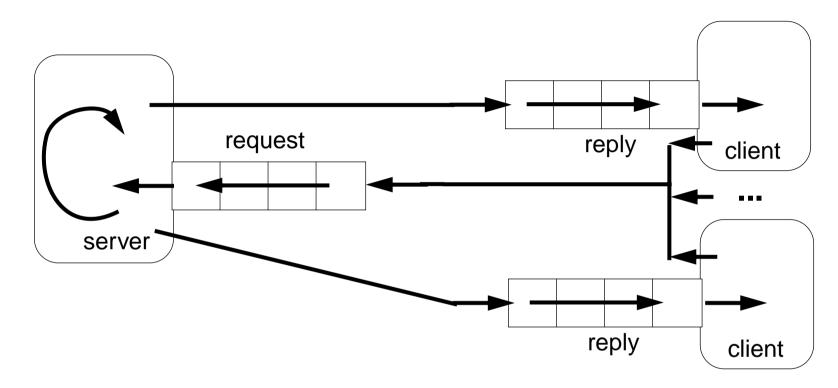
Termination conditions


When system of processes terminates the following conditions must hold:

- 1. All channels are empty.
- 2. No processes are blocked on a receive operation.
- 3. All processes are terminated.

Otherwise the **system state is not well-defined**, e.g. task is not completed, some operations are pending.

Problem:


In general, the processes do not know the global system state.

setArg (ind, val), getArg (ind), getArgList ()

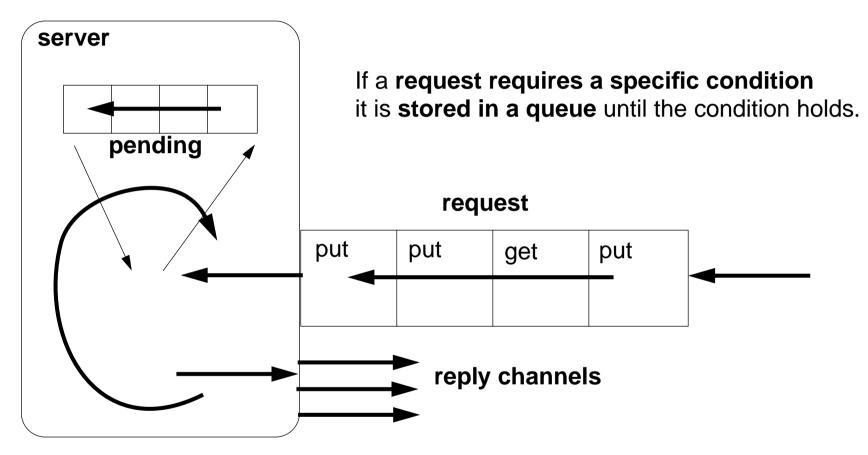
Client / server: basic channel structure

One server process responds to requests of several client processes

request channel:

input port of the server

reply channel:


one for each client (input port), may be sent to the server included in the request message

Application: server distributes data or work packages on requests

PPJ-64

Server processes: different kinds of operations

Different requests (operations) are represented by different kinds of messages.

The server processes the requests strictly sequentially;

thus, it is guaranteed that critical sections are **not executed interleaved**.

Termination: terminate clients, empty channel, empty queue.

Different kinds of operations on different channels server pending put requests get requests reply channels

Server must not block on an empty input port while another port may be non-empty:

```
while (running) {
  if (!putPort.empty()) {
                           msg = putPort.receive(); ... }
                           msg = getPort.receive(); ... }
  if (!getPort.empty()) {
  if (!pending.empty()) {
                           msg = pending.dequeue(); ... }
```

Several servers

Several server processes, several client processes, several request channels

Termination: empty request channels, empty queues, empty reply channels

Caution: a receive on a channel may block a server!

© 2015 bei Prof. Dr. Uwe Kastens

Receive without blocking

If several processes receive from a channel **ch**, then the check

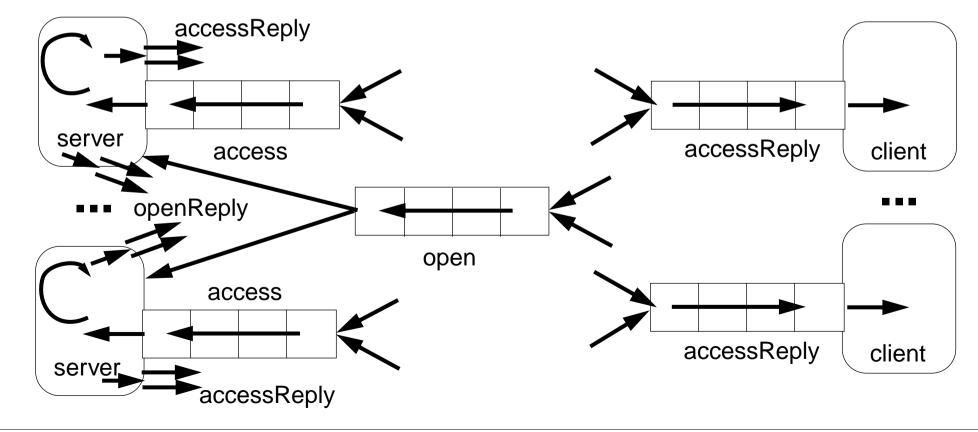
```
if (!ch.empty()) msg = ch.receive();
```

may block.

That is not acceptable when several channels have to be checked in turn. Hence, a new non-blocking channel method is introduced:

```
public class Channel
     . . .
     public synchronized Object receiveMsgOrNull ()
        if (msgQueue.empty()) return null;
        Object result = msgQueue.front();
        msqQueue.dequeue();
        return result;
   }
Checking several channels:
  while (msg == null)
     if ((msg = ch1.receiveMsgOrNull()) == null)
   {
     if ((msg = ch2.receiveMsgOrNull()) == null)
        Thread.sleep (500);
```

Conversation sequences between client and server


PPJ-69

Example for an **application pattern** is "file servers":

- several equivalent servers respond to requests of several clients
- a client sends an **opening request** on a **channel common** for all servers (**open**)
- one server commits to the task; it then leads a conversation with the client according to a specific protocol, e. g.

(open openReply) ((read readReply) | (write writeReply))* (close closeReply)

• reply channels are contained in the open and openReply messages.

PPJ-70 Active monitor (server) vs. passive monitor		
active monitor		passive monitor
active process	1. program structure	passive program module
request - reply via channels	2. client communication	calls of entry procedures
kinds of messages and/or different channels	3. server operations	entry procedures
requests are handled sequentially	4. mutual exclusion	guaranteed for entry procedure calls
queue of pending requests replies are delayed	5. delayed service	client processes are blocked condition variables, wait - signal
may cooperate on the same request channels	6. multiple servers	multiple monitors are not related