
©
 2

01
4

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Parallel Programming
Prof. Dr. Uwe Kastens

Winter 2014 / 2015

PPJ-1

©
 2

00
5

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Objectives
PPJ-2

The participants are taught to understand and to apply

• fundamental concepts and high-level paradigms of parallel programs,

• systematic methods for developing parallel programs,

• techniques typical for parallel programming in Java;

• English language in a lecture.

Exercises:

• The exercises will be tightly integrated with the lectures.

• Small teams will solve given assignments practically supported by a lecturer.

• Homework assignments will be solved by those teams.

©
 2

00
6

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Contents

Week Topic

1 1. Introduction

2 2. Properties of Parallel Programs

4 3. Monitors in General and in Java

5 4. Systematic Development of Monitors

6 5. Data Parallelism: Barriers

7 6. Data Parallelism: Loop Parallelization

11 7. Asynchronous Message Passing

12 8. Messages in Distributed Systems

14 9. Synchronous message Passing

10. Conclusion

PPJ-3

Prerequisites

Topic Course that teaches it

practical experience in programming Java Grundlagen der Programmierung 1, 2

foundations in parallel programming Grundlagen der Programmierung 2,
Konzepte und Methoden der
Systemsoftware (KMS)

process, concurrency, parallelism, KMS
interleaved execution KMS
address spaces, threads, process states KMS
monitor KMS

process, concurrency, parallelism, GP, KMS
threads, GP, KMS
synchronization, monitors in Java GP, KMS

verfication of properties of programs Modellierung

PPJ-4

©
 2

01
4

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns
Organization of the course

PPJ-5

©
 2

01
2

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Literature

Course material „Parallel Programming “
http://ag-kastens.upb.de/lehre/material/ppje

Course material „Grundlagen der Programmierung“ (in German)
Course material „Software-Entwicklung I + II “ WS, SS 1998/1999:(in German)

http://ag-kastens.upb.de/lehre/material/swei
Course material „Konzepte und Methoden der Systemsoftware “ (in German)
Course material „Modellierung “ (in German)

http://ag-kastens.upb.de/lehre/material/model

Gregory R. Andrews: Concurrent Programming , Addison-Wesley, 1991

Gregory R. Andrews: Foundations of multithreaded, parallel, and distributed
programming, Addison-Wesley, 2000

David Gries: The Science of Programming , Springer-Verlag, 1981

Scott Oaks, Henry Wong: Java Threads , 2nd ed., O‘Reilly, 1999

Jim Farley: Java Distributed Computing , O‘Reilly, 1998

Doug Lea: Concurrent Programming in Java , Addison-Wesley, 2nd Ed., 2000

PPJ-6
©

 2
00

5
be

i P
ro

f.
D

r.
 U

w
e

K
as

te
ns

Fundamental notions (repeated): Parallel processes

process :
Execution of a sequential part of a program in its storage (address space).
Variable state: contents of the storage and the position of execution

parallel processes :
several processes, which are executed simultaneously on several processors

interleaved processes :
several processes, which are executed piecewise alternatingly on a single processor
processes are switched by a common process manager or by the processes themselves.

interleaved execution can simulate parallel execution;
frequent process switching gives the illusion that all process execute steadily.

concurrent processes:
processes, that can be executed in parallel or interleaved

p1
p2
p3

p1
p2
p3

PPJ-7

©
 2

01
1

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Fundamental notions (repeated): States and transitions of
processes

Threads (lightweight processes, Leichtgewichtsprozesse):
Processes, that are executed in parallel or interleaved in one common address space;
process switching is easy and fast.

PPJ-8

wartend

bereit

block

allocate processor

release

deallocate processor

blocked

ready running
Scheduling

see KMS 2-17, 2-18

rechnend

©
 2

01
5

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns
Applications of parallel processes

PPJ-9

• Event-based user interfaces :
Events are propagated by a specific process of the system.
Time consuming computations should be implemented by concurrent
processes,
to avoid blocking of the user interface.

• Simulation of real processes:
e. g. production in a factory

• Animation :
visualization of processes, algorithms; games

• Control of machines in Real-Time:
processes in the computer control external facilities,
e. g. factory robots, airplane control

• Speed-up of execution by parallel computation:
several processes cooperate on a common task,
e. g. parallel sorting of huge sets of data

The application classes follow different objectives .

©
 2

00
5

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Create threads in Java - technique: implement Runnable

Processes, threads in Java :
concurrently executed in the common address space of the program (or applet),
objects of class Thread with certain properties

Technique 1 : A user‘s class implements the interface Runnable :

class MyTask implements Runnable
{ ...

public void run () The interface requires to implement the method run
{...} - the program part to be executed as a process.
public MyTask(...) {...} The constructor method.

}

The process is created as an object of the predefined class Thread :

Thread aTask = new Thread (new MyTask (...));

The following call starts the process:

aTask.start(); The new process starts executing in parallel with the initiating one.

This technique (implement the interface Runnable) should be used if

• the new process need not be influenced any further;
i. e. it performs its task (method run) and then terminates, or

• the user‘s class is to be defined as a subclass of a class different from Thread

PPJ-10
©

 2
00

5
be

i P
ro

f.
D

r.
 U

w
e

K
as

te
ns

Create threads in Java - technique: subclass of Thread

Technique 2 :
The user‘s class is defined as a subclass of the predefined class Thread :

class DigiClock extends Thread
{ ...

public void run () Overrides the Thread method run .
{...} The program part to be executed as a process.
DigiClock (...) {...} The constructor method.

}

The process is created as an object of the user‘s class (it is a Thread object as well):

Thread clock = new DigiClock (...);

The following call starts the process:

clock.start(); The new process starts executing in parallel with the initiating one.

This technique (subclass of Thread) should be used if
the new process needs to be further influenced ; hence,
further methods of the user‘s class are to be defined and called from outside the class,
e. g. to interrupt the process or to terminate it.
The class can not have another superclass!

PPJ-11

©
 2

00
5

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Important methods of the class Thread

public void run ();

is to be overridden with a method that contains the code to be executed as a process

public void start ();

starts the execution of the process
public void suspend ();

(deprecated, deadlock-prone),
suspends the indicated process temporarily: e. g. clock.suspend();

public void resume ();
(deprecated), resumes the indicated process: clock.resume();

public void join () throws InterruptedException;

the calling process waits until the indicated process has terminated

try { auftrag.join(); } catch (Exception e){}

public static void sleep (long millisec) throws InterruptedException;

the calling process waits at least for the given time span (in milliseconds), e. g.

try { Thread.sleep (1000); } catch (Exception e){}

public final void stop () throws SecurityException;
not to be used! May terminate the process in an inconsistent state.

PPJ-12

©
 2

01
1

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns
Example: Digital clock as a process in an applet (1)

The process displays the current date and time
every second as a formatted text.

class DigiClock extends Thread
{ public void run ()

{ while (running) iterate until it is terminated from the outside
{ line.setText(new Date().toString()); write the date

try { sleep (1000); } catch (Exception ex) {} pause
}

}
Method, that terminates the process from the outside:

public void stopIt () { running = false; }
private volatile boolean running = true; state variable

public DigiClock (Label t) {line = t;} label to be used for the text
private Label line;

}

Technique process as a subclass of Thread , because it

• is to be terminated by a call of stopIt ,

• is to be interrupted by calls of further Thread methods,

• other super classes are not needed .

PPJ-13

©
 2

00
8

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Example: Digital clock as a process in an applet (2)

The process is created in the init method of the subclass of Applet :

public class DigiApp extends Applet
{ public void init ()

{ Label clockText = new Label ("--------------------------------");
add (clockText);

clock = new DigiClock (clockText); createprocess
clock.start(); start process

}

public void start () { /* see below */ } resume process
public void stop () { /* see below */ } suspend process
public void destroy () { clock.stopIt(); } terminate process

private DigiClock clock;
}

Processes, which are started in an applet

• may be suspended, while the applet is invisible (stop , start);
better use synchronization or control variables instead of suspend , resume

• are to be terminated (stopIt), when the applet is deallocated (destroy).

Otherwise they bind resources, although they are not visible.

PPJ-14
©

 2
00

9
be

i P
ro

f.
D

r.
 U

w
e

K
as

te
ns

2. Properties of Parallel Programs
PPJ - 15a

Goals:

• formal reasoning about parallel programs

• proof properties of parallel programs

• develop parallel programs such that
certain properties can be proven

Example A:

x := 0; y := 0
co x := x + 1 //

y := y + 1
oc
z := x + y

Branches of co-oc are executed
in parallel.

Proof that z = 2 holds at the end.

Example B:

x := 0; y := 0
co x := y+ 1 //

y := x+ 1
oc
z := x + y

Show that z = 2 can not be
proven.

Methods:

Hoare Logic, Weakest Precondition, techniques for parallel programs

©
 2

01
1

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Proofs of parallel programs
PPJ - 15ab

Example A:
x := 0; y := 0 {x=0 ∧ y=0}
co
{x+1=1} x := x + 1 {x=1} //
{y+1=1} y := y + 1 {y=1}
oc
{x=1 ∧ y=1} → {x+y=2}
z := x + y {z=2}

Does an assignment of process p interfere with an assertion of process q ?

Example B 2:
x := 0; y := 0 {x ≥0 ∧ y≥0}
co
{y+1>0} x := y + 1 {x>0} //
{x+1>0} y := x + 1 {y>0}
oc
{x>0 ∧ y>0} → {x+y ≥2}
z := x + y {z ≥2}

Example B 1:
x := 0; y := 0 {x=0 ∧ y=0}
co
{y+1=1} x := y + 1 {x=1} //
{x+1=1} y := x + 1 {y=1}
oc
{x=1 ∧ y=1} → {x+y=2}
z := x + y {z=2}

Check each proof for correctness!

Explain!

©
 2

00
8

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns
Hoare Logic: a brief reminder

PPJ - 15b

Formal calculus for proving properties of algorithms or programs [C. A. R. Hoare, 1969]

Predicates (assertions) are stated for program positions:

{P} S1 {Q} S2 {R}

A predicate, like Q, characterizes the set of states that any execution of the program can
achieve at that position. The predicates are expressions over variables of the program.

Each triple {P} S {Q} describes an effect of the execution of S. P is called a precondition,
Q a postcondition of S.

The triple {P} S {Q} is correct, if the following holds:
If the execution of S is begun in a state of P and if it terminates , the the final state is in Q
(partial correctness).

Two special assertions are:
{true} characterizing all states, and {false} characterizing no state.

Proofs of program properties are constructed using axioms and inference rules which
describe the effects of each kind of statement, and define how proof steps can be correctly
combined.

©
 2

00
8

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Axioms and inference rules for sequential constructs
PPJ - 15c

statement sequence

{P}
{Q}

{P}

 S1 {Q}
{R}

{R}

S2

S1; S2

1
{ P } S { R }

{ R } → { Q }

{ P } S { Q }

weaker postcondition

4

{ P } → { R }

{ R } S { Q }

{ P } S { Q }

stronger precondition

3

{ P[x/e] } x := e {P}

assignment

P[x/e] means: P with all
free occurrences
of x substituted by e

2
P ∧ ¬(Β1 ∨ ... ∨ Βn) ⇒ Q
{P ∧ Bi} Si {Q}, 1 ≤ i ≤ n

{P} if Β1 → S1 [] ... [] Βn → Sn fi {Q}

multiple alternative (guarded command)

5

{INV ∧ Bi} Si {INV}, 1 ≤ i ≤ n

{INV} do Β1 → S1 [] ... [] Βn → Sn od {INV ∧ ¬(Β1 ∨ ... ∨ Βn)}

selecting iteration

6

{P} skip {P}

no operation

7

©
 2

01
1

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Verification: algorithm computes gcd
PPJ-15d

precondition: x, y ∈ , i. e. x > 0, y > 0; let G be greatest common divisor of x and y
postcondition: a = G
algorithm with { assertions over variables }:

{ G is gcd of x and y ∧ x>0 ∧ y>0 }
a := x; b := y;
{ INV: G is gcd of a and b ∧ a>0 ∧ b>0 }
do a ≠ b ->

{ INV ∧ a ≠ b }
if a > b ->

{ G is gcd of a and b ∧ a>0 ∧ b>0 ∧ a>b } →
{ G is gcd of a-b and b ∧ a-b>0 ∧ b>0 }
a := a - b
{ INV }

[] a <= b ->
{ G is gcd of a and b ∧ a>0 ∧ b>0 ∧ b>a } →
{ G is gcd of a and b-a ∧ a>0 ∧ b-a>0 }
b := b - a
{ INV }

fi { INV ∧ a ≠ b ∧ ¬(a>b ∨ a ≤ b) → INV} „there is no 3rd case for the if -> INV“
{ INV }

od
{ INV ∧ a = b } →
{ a = G }

ΙN

the loop terminates:

• a+b decreases monotonic

• a+b > 0 is invariant

©
 2

00
5

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Weakest precondition
PPJ - 15e

A similar calculus as Hoare Logic is based on the notion of weakest preconditions
[Dijkstra, 1976; Gries 1981]:

Program positions are also annotated by assertions that characterize program
states.

The weakest precondition wp (S, Q) = P of a statement S maps a predicate
Q on a predicate P (wp is a predicate transformer).
wp (S, Q) = P characterizes the largest set of states such that if the
execution of S is begun in any state of P, then the execution is guaranteed to
terminate in a state of Q
(total correctness).

If P ⇒ wp (S, Q) then {P} S {Q} holds in Hoare Logic.

This concept is a more goal oriented proof method compared to Hoare Logic.
We need weakest precondition only in the definition of „non-interference“ in proof
for parallel programs.

©
 2

01
1

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns
Examples for weakest preconditions

PPJ - 15f

1. P = wp (statement, Q)

2. i ≤ 0 = wp (i := i + 1 , i ≤ 1)

3. true = wp (if x >= y then z := x else z := y , z = max (x, y))

4. (y ≥ x) = wp (if x >= y then z := x else z := y , z = y)

5. false = wp (if x >= y then z := x else z := y , z = y-1)

6. (x = y+1) = wp (if x >= y then z := x else z := y , z = y+1)

7. wp (S, true) = the set of all states such that the execution of S begun in one
of them is guaranteed to terminate

©
 2

00
5

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Interleaving - used as an abstract execution model

Processes that are not blocked may be switched at arbitrary points in time.
A scheduling strategy reduces that freedom of the scheduler.

An example shows how different results are exhibited by switching processes differently.
Two processes operate on a common variable account :

Assume that the assignments a - f are atomic. Try any interleaved execution order of the two
processes on a single processor. Check what the value of account is in each case.

Assume the sequences of statements <a,b> and <d, e> (or <b, c> and <e, f>) are atomic
and check the results of any interleaved execution order.

We get the same variety of results , because there are no global variables in b or e
The coarser execution model is sufficient.

PPJ-17a

Process1: t1 = account; t1 = t1 + 10; account = t1;

Process2: t2 = account; t2 = t2 - 5; account = t2;

account = 50;

a b c

d e f

©
 2

00
8

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Atomic actions

Atomic action : A sequence of (one or more) operations, the internal states of which can not be
observed because it has one of the following properties:

• it is a non-interruptable machine instruction ,

• it has the AMO property, or

• Synchronization prohibits, that the action is interleaved with those of other processes,
i. e. explicitly atomic.

At-most-once property (AMO):

The construct has at most one point where an other process can interact:

• Expression E:
E has at most one variable v, that is written by a different process, and
v occurs only once in E.

• Assignment x := E :
E is AMO and x is not read by a different process, or
x may be read by a different process, but E does not contain any global variable.

• Statement sequence S:
one statement in S is AMO and all other statements in S do not have any global variable.

PPJ-17b

©
 2

00
5

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Atomic by AMO
PPJ-17c

Interleaving analysis is simpler , if atomic decomposition is coarser .

Check AMO property for nested constructs. Consider the most enclosing one to be atomic.

assume x = 0; y = 0; z = 0; to be global

atomic AMO constructs < ... >:

< t = < < x > + < 1 > >; > < x = < 1 >; >

Examples :

interleaving actions of two processes:

a
p1: < t = 0; t = t + 1; >

p2: < s = 0; s = s + 1; >
b

a
p1: < x = 2; >

p2: < t = x + 1; >
b

b a
p1: x = < y + 1 > ;

p2: y = < x + 1 >;
d c

c a b
p1: x = <y> + <z>;

p2: <y = 1; > < z = 2; >;
d e

(1)

(3)

(2)

(4)

©
 2

00
8

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns
Interference between processes

Critical assertions characterize observable states of a process p:
Let {P} S {Q} be the statement sequence of process p with its pre- and postcondition.
Then Q is critical.
Let T be a statement in S that is not part of an atomic statement and R its postcondition;
then C = wp (T, R) is critical.

For every critical assertion of the proof of p, it has to be proven that
non-interference NI (A, C) holds for each assignment A of every other process q:

non-interference NI (A, C) holds between
assignment A: {D} x = e in q having precondition D in a proof of q and
assertion C on p, if the following can be proven in programming logic:

{ C ∧ D} A { C }
i. e. the execution of A does not interfere with C (can not change C) ,
provided that the precondition D allows to execute A in a state where C holds.

PPJ-17d

p:

q:

{C1} <... atomic action...> {C2} < ... > {C3} < ... > {C4}

{D1} x = ... {D2} y = ...

NI (A, C)

©
 2

00
5

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Example: Interference between an assertion and an assignment
PPJ-17e

Consider processes p and q with assertions at observable states .

Consider a single critical assertion C in p and a single assignment A in q :

p: ...<...> { C} <...>...

q: ...<...> { d+1 > 0 } a = d + 1; {Q} <...>...
A

Does A interfere with C? Depends on C:

1. C: a == 1
{ a == 1 ∧ d + 1 > 0 } a = d + 1 { a == 1 } is not provable ⇒ interference

C C

2. C: a > 0
{ a > 0 ∧ d + 1 > 0 } a = d + 1 { a > 0 } is provable ⇒ non-interference

3. C: a==1 ∧ d<0
{ a==1 ∧ d<0 ∧ d+1>0 } a = d + 1 { a==1 ∧ d<0} is provable ⇒ non-interference

_____f_____

©
 2

01
5

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Non-interference checks
PPJ - 17f

x := 0; y := 0;
{ x = 0 ∧ y = 0 }
co {x+1 = 1} x := x+1 {x=1} //

{y+1 = 1} y:= y+1 {y=1}
oc
{ x = 1 ∧ y = 1} => {x+y = 2}
z := x+y
{z = 2}

NI(a, C) holds for all 4 cases, e.g.

{ x+1 = 1 ∧ y+1 = 1} y:= y+1 {x+1 = 1 ∧ y = 1} =>
{x+1 = 1}C

C

x := 0; y := 0;
{ x = 0 ∧ y = 0 }
co {y+1 = 1} x := y+1 {x=1} //

{x+1 = 1} y:= x+1 {y=1}
oc
{ x = 1 ∧ y = 1} => {x+y = 2}
z := x+y
{z = 2}

NI(y:= x+1 , y+1 = 1) does not hold:

{ y+1 = 1 ∧ x+1 = 1} y:= x+1 {y+1 = 1}
is not correct

is not correct

©
 2

01
5

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Two inference rules for concurrent execution
PPJ - 17g

The statement for condition synchronization

<await B -> S>

causes the executing process to be blocked
until the condition B is true; then S is executed.
The whole statement is executed as an atomic
action; hence B holds at the begin of S.

{P ∧ B} S {Q}

{P} <await B -> S > {Q}

The statement for concurrent processes

co S 1 // ... // S n oc

executes the statements Si concurrently. It
terminates when all Si have terminated.

{Pi} Si {Qi}, 1 ≤ i ≤ n, are interference-free theorems

{P1 ∧ ... ∧ Pn} co S 1 // ... // S n oc {Q1 ∧ ... ∧ Qn}

Non-Interference is to be proven.

©
 2

01
1

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns
Avoiding interference

PPJ - 17h

1. disjoint variables :
Two concurrent processes p and q are interference-free if the set of variables p writes to is
disjoint from the set of variables q reads from and vice versa.

2. weakened assertions :
The assertions in the proofs of concurrent processes can in some cases be made
interference-free by weakening them.

3. atomic action :
A non-interference-free assertion C can be hidden in an atomic action.

4. condition synchronization :
A synchronization condition can make an interfering assignment interference-free.

p:: ... x := e ...

q:: ... S1 {C} S2 ...

p:: ... x := e ...

q:: ... <S1 {C} S2 > ...

p:: .. <await not C or B -> x:=e > ...
with B = wp (x:=e, C)

q:: ... S1 {C} S2 ...

p:: ... x := e ...

q:: ... S1 {C} S2 ...

S2 can not be
executed in this state

C holds after x:=eor

©
 2

01
1

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

3. Monitors in general and in Java
Communication and synchronization of parallel processes

Communication between parallel processes: exchange of data by

• using a common, global variable,
only in a programming model with common storage

• messages in programming model distributed or common storage
synchronous messages: sender waits for the receiver (languages: CSP, Occam, Ada, SR)
asynchronous messages: sender does not wait for the receiver (languages: SR)

Synchronization of parallel processes:

• mutual exclusion (gegenseitiger Ausschluss):
certain statement sequences (critical regions) may not be executed by several processes at
the same time

• condition synchronization (Bedingungssynchronisation):
a process waits until a certain condition is satisfied by a different process

Language constructs for synchronization :
Semaphore, monitor, condition variable (programming model with common storage)
messages (see above)

Deadlock (Verklemmung):
Some processes are waiting cyclically for each other, and are thus blocked forever

PPJ-18
©

 2
01

5
be

i P
ro

f.
D

r.
 U

w
e

K
as

te
ns

Monitor - general concept
PPJ-19a

Monitor : high level synchronization concept introduced in
[C.A.R. Hoare 1974, P. Brinch Hansen 1975]

Definition :

• A monitor is a program module for concurrent programming with
common storage ; it encapsulates data with its operations.

• A monitor has entry procedures (which operate on its data);
they are called by processes ; the monitor is passive .

• The monitor guarantees mutual exclusion for calls of entry
procedures:
at most one process executes an entry procedure at any time.

• Condition variables are defined in the monitor and are
used within entry procedures for condition synchronization .

©
 2

00
8

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Condition variables
PPJ-19b

A condition variable c is defined to have 2 operations to operate on it.
They are executed by processes when executing a call of an entry procedure.

• wait (c) The executing process leaves the monitor and
waits in a set associated to c,
until it is released by a subsequent call signal(c);
then the process accesses the monitor again and continues.

• signal (c): The executing process releases one arbitrary process that waits for c.

Which of the two processes immediately continues its execution
in the monitor depends on the variant of the signal semantics (see PPJ-22).
signal-and-continue :
The signal executing process continues its execution in the monitor.

A call signal (c) has no effect, if no process is waiting for c.

Condition synchronization usually has the form
if not B then wait (c); or while not B do wait (c);

The condition variable c is used to synchronize on the condition B .

Note the difference between condition variables and semaphores:
Semaphores are counters. The effect of a call V(s) on a semaphore is not lost if no
process is waiting on s.

©
 2

00
8

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns
Example: bounded buffer

monitor Buffer
buf: Queue (k);
notFull, notEmpty: Condition ; 2 condition variables: state of the buffer

entry put (d: Data)
do length(buf) = k -> wait (notFull); od;
enqueue (buf, d);
signal (notEmpty);

end;

entry get (var d: Data)
do length (buf) = 0 -> wait (notEmpty); od;
d := front (buf); dequeue (buf);
signal (notFull);

end;
end;

process Producer (i: 1..n) d: Data;
loop d := produce(); Buffer.put(d); end;

end;

process Consumer (i: 1..m) d: Data;
loop Buffer.get(d); consume(d); end;

end;

PPJ-20

©
 2

01
5

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Synchronization in a monitor
PPJ-21

entry procedures condition variables

get

put

notFull

notEmpty

process in the monitor

processes have executed
signal(c);
in case of signal-and-wait

processes wait
to execute an
entry procedure

processes have
executed wait(c),
they wait to be

semantic, they wait to
re-enter the monitor

by a signal(c)
allowed to re-enter

©
 2

01
0

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Variants of signal-wait semantics
PPJ-22

Processes compete for the monitor

• processes that are blocked by executing wait(c) ,

• process that is in the monitor, may be executing signal(c)

• processes that wait to execute an entry procedure

signal-and-exit semantics:
The process that executes signal terminates the entry procedure call and
leaves the monitor.
The released process enters the monitor immediately - without a state change in between

signal-and-wait semantics:
The process that executes signal leaves the monitor and waits to re-enter the monitor.
The released process enters the monitor immediately - without a state change in between
Variant signal-and-urgent-wait :

The process that has executed signal gets a higher priority
than processes waiting for entry procedures

signal-and-continue semantics:
The process that executes signal continues execution in the monitor.
The released process has to wait until the monitor is free. The state that held at the
signal call may be changed meanwhile; the waiting condition has to be checked again:

do length(buf) = k -> wait(notFull); od;

©
 2

01
1

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Variants of signal-wait semantics: examples of execution
PPJ-22a

p-entry

p-signal

p-wait

signal-and-continue

signal(c)

{s}

{?}

3 processes:
p-entry waits to enter an entry procedure
p-signal executes signal(c)
p-wait has executed wait(c)

{s} state when signal(c) is executed
{s} may be modified here:

p-entry

p-signal

p-wait

signal-and-wait

signal(c)

{s}

{s}

p-entry

p-signal

p-wait

signal-and-urgent-wait

signal(c)

{s}

{s}

p-entry

p-signal

p-wait

signal-and-exit

signal(c)

{s}

{s}

©
 2

00
3

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns
Monitors in Java: mutual exclusion

Objects of any class can be used as monitors

Entry procedures:
Methods of a class, which implement critical operations on instance variables
can be marked synchronized:

class Buffer
{ synchronized public void put (Data d) {...}

synchronized public Data get () {...}
...
private Queue buf;

}

If several processes call synchronized methods for the same object,
they are executed under mutual exclusion .
They are synchronized by an internal synchronization variable of the object (lock).

Non-synchronized methods can be executed at any time concurrently.

There are also synchronized class methods : they are called under mutual exclusion with
respect to the class.

synchronized blocks can be used to specify execution of a critical region with respect to an
arbitrary object.

PPJ-23

©
 2

01
1

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Monitors in Java: condition synchronization

All processes that are blocked by wait are held in a single set;
condition variables can not be declared (there is only an implicit one)

Operations for condition synchronization:
are to be called from inside synchronized methods:

• wait() blocks the executing process;
releases the monitor object, and
waits in the unique set of blocked processes of the object

• notifyAll() releases all processes that are blocked by wait for this object;
they then compete for the monitor;
the executing process continues in the monitor
(signal-and-continue semantics).

• notify() releases an arbitrary one of the processes that are blocked by wait
for this object;
the executing process continues in the monitor
(signal-and-continue semantics);
only usable if all processes wait for the same condition .

Always call wait in loops , because with signal-and-continue semantics
after notify , notifyAll the waiting condition may be changed:

while (!Condition) try { wait(); } catch (InterruptedException e) {}

PPJ-24
©

 2
00

3
be

i P
ro

f.
D

r.
 U

w
e

K
as

te
ns

A Monitor class for bounded buffers

class Buffer
{ private Queue buf; // Queue of length n to store the elements

public Buffer (int n) {buf = new Queue(n); }

synchronized public void put (Object elem)
{ // a producer process tries to store an element

while (buf.isFull()) // waits while the buffer is full
try {wait();} catch (InterruptedException e) {}

buf.enqueue (elem); // changes the waiting condition of the get method
notifyAll(); // every blocked process checks its waiting condition

}

synchronized public Object get ()
{ // a consumer process tries to take an element

while (buf.isEmpty()) // waits while the buffer is empty
try {wait();} catch (InterruptedException e) {}

Object elem = buf.first();
buf.dequeue(); // changes the waiting condition of the put method
notifyAll(); // every blocked process checks its waiting condition
return elem;

}
}

PPJ-25

©
 2

01
5

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Concurrency Utilities in Java 2
PPJ-25j

The Java 2 platform includes a package of concurrency utilities. These are
classes which are designed to be used as building blocks in building concurrent
classes or applications. ...

...

Locks - While locking is built into the Java language via the synchronized
keyword, there are a number of inconvenient limitations to built-in monitor
locks . The java.util.concurrent.locks package provides a high-
performance lock implementation with the same memory semantics as
synchronization , but which also supports specifying a timeout when
attempting to acquire a lock, multiple condition variables per lock, non-lexically
scoped locks, and support for interrupting threads which are waiting to acquire a
lock.

http://java.sun.com/j2se/1.5.0/docs/guide/concurrency/index.html

http://java.sun.com/j2se/1.5.0/docs/api/java/util/concurrent/locks/Condition.html

©
 2

00
5

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns
Concurrency Utilities in Java 2 (example)

PPJ-25k

class BoundedBuffer {
final Lock lock = new ReentrantLock(); explicit lock
final Condition notFull = lock.newCondition(); condition variables
final Condition notEmpty = lock.newCondition();

final Object[] items = new Object[100];
int putptr, takeptr, count;

public void put (Object x) throws InterruptedException {
lock.lock(); explicit mutual exclusion
try { while (count == items.length) notFull.await(); specific wait

items[putptr] = x;
if (++putptr == items.length) putptr = 0;
++count;
notEmpty.signal(); specific signal

} finally { lock.unlock(); } explicit mutual exclusion
}

public Object get () throws InterruptedException {
lock.lock(); explicit mutual exclusion
try { while (count == 0) notEmpty.await(); specific wait

Object x = items[takeptr];
if (++takeptr == items.length) takeptr = 0;
--count;
notFull.signal(); specific signal
return x;

} finally { lock.unlock(); } explicit mutual exclusion
}

}

©
 2

01
5

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

3. Systematic Development of monitors
Monitor invariant

A monitor invariant (MI) specifies acceptable states of a monitor

MI has to be true whenever a process may leave or (re-)enter the monitor :

• after the initialization ,

• at the beginning and at the end of each entry procedure ,

• before and after each call of wait ,

• before and after each call of signal with signal-and-wait semantics (*),

• before each call of signal with signal-and-exit semantics (*).

Example of a monitor invariant for the bounded buffer:
MI: 0 <= buf.length() <= n

The monitor invariant has to be proven for the program positions
after the initialization, at the end of entry procedures, before calls of wait (and signal if (*)).

One can assume that the monitor invariant holds at the other positions
at the beginning of entry procedures, after calls of wait (and signal if (*)).

PPJ-26
©

 2
01

0
be

i P
ro

f.
D

r.
 U

w
e

K
as

te
ns

Design steps using monitor invariant

1. Define the monitor state, and design the entry procedures without synchronization
e. g. bounded buffer: element count; entry procedures put and get

2. Specify a monitor invariant
e. g.: MI: 0 <= length(buf) <= N

3. Insert conditional waits :
Consider every operation that may violate MI, e. g. enqueue(buf) ;
find a condition Cond such that the operation may be executed safely if Cond && MI holds,
e. g. { length(buf)<N && MI } enqueue(buf);
define one condition variable c for each condition Cond
insert a conditional wait in front of the operation:

do !(length(buf)<N) -> wait(c); od
Loop is necessary in case of signal-and-continue or the may in step 4!

4. Insert notification of processes:
after every state change that may make a waiting condition Cond true insert

signal(c) for the condition variable c of Cond
e. g. dequeue(buf); signal (c);
Too many signal calls do not influence correctness - they only cause inefficiency.

5. Eliminate unnecessary calls of signal (see PPJ-28)
Caution: Missing signal calls may cause deadlocks!
Caution: signal-and-continue semantics lacks control of state changes

PPJ-27

©
 2

00
8

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Bounded buffers
Derivation step 1: monitor state and entry procedures

monitor Buffer
buf: Queue; // state: buf, length(buf)

init buf = new Queue(n); end

entry put (d: Data) // a producer process tries to store an element

enqueue (buf, d);

end;

entry get (var d: Data) // a consumer process tries to take an element

d := front(buf);
dequeue(buf);

end;
end;

PPJ-27a

©
 2

00
8

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns
Bounded buffers

Derivation step 2: monitor invariant MI
monitor Buffer

buf: Queue; // state: buf, length(buf)

init buf = new Queue(n); end // MI: 0 <= length(buf) <= N

entry put (d: Data) // a producer process tries to store an element

enqueue (buf, d);

end;

entry get (var d: Data) // a consumer process tries to take an element

d := front(buf);
dequeue(buf);

end;
end;

PPJ-27b

©
 2

01
5

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Bounded buffers
Derivation step 3: insert conditional waits

monitor Buffer
buf: Queue; // state: buf, length(buf)

notFull, notEmpty: Condition;

init buf = new Queue(n); end // MI: 0 <= length(buf) <= N

entry put (d: Data) // a producer process tries to store an element

/* length(buf) < N && MI */
enqueue (buf, d);

end;

entry get (var d: Data) // a consumer process tries to take an element

/* length(buf) > 0 && MI */
d := front(buf);
dequeue(buf);

end;
end;

PPJ-27c
©

 2
01

5
be

i P
ro

f.
D

r.
 U

w
e

K
as

te
ns

Bounded buffers
Derivation step 3: insert conditional waits

monitor Buffer
buf: Queue; // state: buf, length(buf)

notFull, notEmpty: Condition;

init buf = new Queue(n); end // MI: 0 <= length(buf) <= N

entry put (d: Data) // a producer process tries to store an element
do length(buf) >= N -> wait(notFull); od;
/* length(buf) < N && MI */
enqueue (buf, d);

end;

entry get (var d: Data) // a consumer process tries to take an element
do length(buf) <= 0 -> wait(notEmpty); od;
/* length(buf) > 0 && MI */
d := front(buf);
dequeue(buf);

end;
end;

PPJ-27ca

©
 2

01
5

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Bounded buffers
Derivation step 4: insert notifications

monitor Buffer
buf: Queue; // state: buf, length(buf)

notFull, notEmpty: Condition;

init buf = new Queue(n); end // MI: 0 <= length(buf) <= N

entry put (d: Data) // a producer process tries to store an element
do length(buf) >= N -> wait(notFull); od;
/* length(buf) < N && MI */
enqueue (buf, d);
/* length(buf)>0 */

end;

entry get (var d: Data) // a consumer process tries to take an element
do length(buf) <= 0 -> wait(notEmpty); od;
/* length(buf) > 0 && MI */
d := front(buf);
dequeue(buf);
/* length(buf)<N */

end;
end;

PPJ-27d

©
 2

01
5

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns
Bounded buffers

Derivation step 4: insert notifications
monitor Buffer

buf: Queue; // state: buf, length(buf)

notFull, notEmpty: Condition;

init buf = new Queue(n); end // MI: 0 <= length(buf) <= N

entry put (d: Data) // a producer process tries to store an element
do length(buf) >= N -> wait(notFull); od;
/* length(buf) < N && MI */
enqueue (buf, d);
/* length(buf)>0 */ signal(notEmpty);

end;

entry get (var d: Data) // a consumer process tries to take an element
do length(buf) <= 0 -> wait(notEmpty); od;
/* length(buf) > 0 && MI */
d := front(buf);
dequeue(buf);
/* length(buf)<N */ signal(notFull);

end;
end;

PPJ-27da

©
 2

01
0

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Bounded buffers
Derivation step 5: eliminate unnecessary notifications

monitor Buffer
buf: Queue; // state: buf, length(buf)

notFull, notEmpty: Condition;

init buf = new Queue(n); end // MI: 0 <= length(buf) <= N

entry put (d: Data) // a producer process tries to store an element
do length(buf) >= N -> wait(notFull); od;
/* length(buf) < N && MI */
enqueue (buf, d);
if (length(buf) == 1) signal(notEmpty); // see PPJ-28

// not correct under signal-and-continue
end;

entry get (var d: Data) // a consumer process tries to take an element
do length(buf) <= 0 -> wait(notEmpty); od;
/* length(buf) > 0 && MI */
d := front(buf);
dequeue(buf);
if length(buf) == (N-1) -> signal(notFull); // see PPJ-28

// not correct under signal-and-continue
end;

end;

PPJ-27e
©

 2
01

0
be

i P
ro

f.
D

r.
 U

w
e

K
as

te
ns

Relevant state changes

Processes need only be awakened when the state change is relevant:
when the waiting condition Cond changes from false to true,
i.e. when a waiting process can be released.

These arguments do not apply for signal-and-continue semantics; there Cond may be
changed between the signal call and the resume of the released process.

E. g. for the bounded buffer states w.r.t signalling are considered:

PPJ-28

full empty
not full
and
not empty

signal (notFull); signal (notEmpty);

no signal call no signal call

no signal call
©

 2
01

5
be

i P
ro

f.
D

r.
 U

w
e

K
as

te
ns

Pattern: Allocating counted resources
PPJ-29

A monitor grants access to a set of k ≥ 1 resources of the same kind .
Processes request n resources, 1≤ n ≤ k, and return them after having used them.
Examples :

Lending bikes in groups (n ≥ 1), allocating blocks of storage (n ≥ 1),
Taxicab provider (n=1), drive with a weight of n ≥ 1 tons on a bridge

The identity of the resources may be relevant: use a boolean array avail[1] ... avail[k]

Monitor invariant requestRes(1) returnRes(1)

0 ≤ avail if/do (!(1≤avail)) wait(av); avail++; /* no wait! */

don’t give a non-ex. resource avail--; signal(av);

stronger invariant:

0 ≤ avail && 0 ≤ inUse if/do (!(1≤avail)) wait(av); if/do (!(1≤inUse)) wait(iu);
... and don’t take back more avail--; inUse++; avail++; inUse--;
than have been given signal(iu); signal(av);

Monitor invariant requestRes(n) returnRes(n)

0 ≤ avail do (!(n≤avail)) wait(av[n]); avail = avail + n; /* no wait! */

don’t give a non-ex. resource avail = avail - n; signal(av[1]); ... signal(av[avail]);

©
 2

01
1

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns
Monitor for resource allocation

A monitor grants access to a set of k >= 1 resources of the same kind .
Processes request n resources, 1<=n<=k, and return them after having used them.

Assumption: Process does not return more than it has received => simpler invariant:

class Resources
{ private int avail; // invariant: avail >= 0

public Resources (int k) { avail = k; }

synchronized public void getElems (int n) // request n elements
{ while (avail<n) // negated waiting condition

try { wait(); } catch (InterruptedException e) {}
avail -= n;

}

synchronized public void putElems (int n) // return n elements
{ avail += n; // waiting is not needed because of assumption

notifyAll(); // notify() would be wrong!
}

}

PPJ-30

©
 2

00
3

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Processes and main program for resource monitor

import java.util.Random;

class Client extends Thread
{ private Resources mon; private Random rand;

private int ident, rounds, maximum;

public Client (Resources m, int id, int rd, int max)
{ mon = m; ident = id; rounds = rd; maximum = max;

rand = new Random(); // a number generator determines how many
} // elements are requested in each round,

public void run () // and when they are returned
{ while (rounds > 0)

{ int m = Math.abs(rand.nextInt()) % maximum + 1;
mon.getElems (m);
try { sleep (Math.abs(rand.nextInt()) % 1000 + 1); }

catch (InterruptedException e) {}
mon.putElems (m);
rounds--;

}
}

}

public class TestResource
{ public static void main (String[] args)

{ int avail = 20;
Resources mon = new Resources (avail);
for (int i=0; i<5; i++)

new Client (mon, i, 4, avail).start();
}

}

PPJ-31
©

 2
01

5
be

i P
ro

f.
D

r.
 U

w
e

K
as

te
ns

Readers-Writers problem (Step 1)
A monitor grants reading and writing access to a data base:
readers shared , writers exclusive .

PPJ-32a

monitor ReadersWriters
nr: int; // number readers
nw: int; // number writers

init nr=0; nw=0; end

entry requestRead()

nr++;

end;

entry releaseRead()
nr--;

end;

entry requestWrite()

nw++;

end;

entry releaseWrite()
nw--;

end;
end;

©
 2

01
5

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Readers-Writers problem (Step 2)
A monitor grants reading and writing access to a data base:
readers shared , writers exclusive .

PPJ-32b

monitor ReadersWriters
nr: int; // number readers
nw: int; // number writers

init nr=0; nw=0; end

entry requestRead()

nr++;

end;

entry releaseRead()
nr--;

end;

entry requestWrite()

nw++;

end;

entry releaseWrite()
nw--;

end;
end;

Monitor invariant RW:

(nr == 0 || nw == 0) && nw <= 1

©
 2

01
5

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns
Readers-Writers problem (Step3)

A monitor grants reading and writing access to a data base:
readers shared , writers exclusive .

PPJ-32c

monitor ReadersWriters
nr: int; // number readers
nw: int; // number writers

init nr=0; nw=0; end

entry requestRead()
do !(nw==0)

-> wait(okToRead);
od;
{ nw==0 && RW }
nr++;
{ RW }

end;

entry releaseRead()
{ RW && nr>0} nr--;

end;

entry requestWrite()
do !(nr==0 && nw<1)

-> wait(okToWrite);
od;
{ nr==0 && nw<1 && RW }
nw++;
{ RW }

end;

entry releaseWrite()
{ RW && nw==1} nw--;

end;
end;

Monitor invariant RW:

(nr == 0 || nw == 0) && nw <= 1

©
 2

01
5

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Readers-Writers problem (Step 4)
A monitor grants reading and writing access to a data base:
readers shared , writers exclusive .

PPJ-32d

monitor ReadersWriters
nr: int; // number readers
nw: int; // number writers

init nr=0; nw=0; end

entry requestRead()
do !(nw==0)

-> wait(okToRead);
od;
{ nw==0 && RW }
nr++;
{ RW }

end;

entry releaseRead()
{ RW && nr>0} nr--;
{ RW && nr>=0}
{ may be nr==0 }

signal(okToWrite);
end;

entry requestWrite()
do !(nr==0 && nw<1)

-> wait(okToWrite);
od;
{ nr==0 && nw<1 && RW }
nw++;
{ RW }

end;

entry releaseWrite()
{ RW && nw==1} nw--;
{ nr==0 && nw==0}
signal(okToWrite);
signal_all(okToRead);

end;
end;

Monitor invariant RW:

(nr == 0 || nw == 0) && nw <= 1

©
 2

01
5

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Readers-Writers problem (Step 5)
A monitor grants reading and writing access to a data base:
readers shared , writers exclusive .

PPJ-32e

monitor ReadersWriters
nr: int; // number readers
nw: int; // number writers

init nr=0; nw=0; end

entry requestRead()
do !(nw==0)

-> wait(okToRead);
od;
{ nw==0 && RW }
nr++;
{ RW }

end;

entry releaseRead()
{ RW && nr>0} nr--;
{ RW && nr>=0}
{ may be nr==0 }
if nr==0
-> signal(okToWrite);

end;

entry requestWrite()
do !(nr==0 && nw<1)

-> wait(okToWrite);
od;
{ nr==0 && nw<1 && RW }
nw++;
{ RW }

end;

entry releaseWrite()
{ RW && nw==1} nw--;
{ nr==0 && nw==0}
signal(okToWrite);
signal_all(okToRead);

end;
end;

Monitor invariant RW:

(nr == 0 || nw == 0) && nw <= 1

©
 2

00
8

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Readers/writers monitor in Java

class ReaderWriter
{ private int nr = 0, nw = 0;

// monitor invariant RW: (nr == 0 || nw == 0) && nw <= 1
synchronized public void requestRead ()
{ while (nw > 0) // negated waiting condition

try { wait(); } catch (InterruptedException e) {}
nr++;

}
synchronized public void releaseRead ()
{ nr--;

if (nr == 0) notify (); // awaken one writer is sufficient
}

synchronized public void requestWrite ()
{ while (nr > 0 || nw > 0) // negated waiting condition

try { wait(); } catch (InterruptedException e) {}
nw++;

}
synchronized public void releaseWrite ()
{ nw--;

notifyAll (); // notify 1 writer and all readers would be sufficient!
}

}

PPJ-33

©
 2

01
5

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns
Method: rendezvous of processes

Processes pass through a sequence of states and interact with each other.
A monitor coordinates the rendezvous in the required order .

Design method :
Specify states by counters ;
characterize allowed states by invariants over counters;
derive waiting conditions of monitor operations from the invariants;
substitute counters by binary variables .

Example: Sleeping Barber :
In a sleepy village close to Paderborn a barber is sleeping while waiting for customers
to enter his shop. When a customer arrives and finds the barber sleeping, he awakens him,
sits in the barber‘s chair, and sleeps while he gets his hair cut. If the barber is busy when a
customer arrives, the customer sleeps in one of the other chairs. After finishing the haircut,
the barber gets paid, lets the customer exit, and awakens a waiting customer, if any.

2 kinds of processes: barber (1 instance), customer (many instances)

2 rendezvous: haircut and customer leaves

The task is also an example for the Client/Server pattern.

PPJ-34

©
 2

00
9

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Monitor design for the Sleeping Barber problem (step 1)
PPJ-35

cinchair

cleave

bavail

bbusy

bdone

processescustomer

getHairCut

processbarber

getNextCustomer

finishedCut

Monitor for barber shop

bclose

entry proc getHairCut:

cinchair++;
cleave++;

entry proc getNextCustomer:

bavail++;
bbusy++;

entry proc finishedCut:

bdone++;
bclose++;

Counters represent states, incremented in entry procedures:

©
 2

00
9

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Monitor invariant for the Sleeping Barber problem (step 2)
PPJ-35a

cinchair

cleave

bavail

bbusy

bdone

processescustomer

getHairCut

processbarber

getNextCustomer

finishedCut

Monitor for barber shop

bclose

Invariants over counters:

C1: cinchair >= cleave and
bavail >= bbusy >= bdone >= bclose

C2: bavail >= cinchair >= bbusy

C3: bdone >= cleave >= bclose

Monitor invariant: BARBER: C1 and C2 and C3

©
 2

00
9

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Waiting conditions for the Sleeping Barber problem (step 3)
PPJ-36

entry proc getHairCut:

do not (bavail > cinchair) -> wait (b); done;
cinchair++;

do not (bdone > cleave) -> wait (o); done;
cleave++;

entry proc getNextCustomer:

bavail++;

do not (cinchair > bbusy) -> wait (c); done;
bbusy++;

entry proc finishedCut:

bdone++;

do not (cleave > bclose) -> wait (e); done;
bclose++;

Monitor invariant: BARBER: C1 and C2 and C3:

C1: cinchair >= cleave and
bavail >= bbusy >= bdone >= bclose guaranteed by execution order

C2: bavail >= cinchair >= bbusy leads to 2 waiting conditions

C3: bdone >= cleave >= bclose leads to 2 waiting conditions

©
 2

00
9

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns
Substitute counters (step 3a)

PPJ-37

entry proc getHairCut:

do not (barber > 0) -> wait (b); done;
barber--; chair++;

do not (open > 0) -> wait (o); done;
open--; exit++;

entry proc getNextCustomer:

barber++;

do not (chair > 0) -> wait (c); done;
chair--;

entry proc finishedCut:

open++;

do not (exit > 0) -> wait (e); done;
exit--;

Old invariants:
C2: bavail >= cinchair >= bbusy
C3: bdone >= cleave >= bclose

New invariants:
C2: barber >= 0 && chair >= 0
C3: open >= 0 && exit >= 0

new binary variables:
barber = bavail - cinchair
chair = cinchair - bbusy
open = bdone - cleave
exit = cleave - bclose

value ranges: {0, 1}

increment operations and conditions are substituted:

©
 2

01
1

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Signal operations for the Sleeping Barber problem (step 4)
PPJ-37a

entry proc getHairCut:

do not (barber > 0) -> wait (b); done;
barber--; chair++; signal (c);

do not (open > 0) -> wait (o); done;
open--; exit++; signal (e);

entry proc getNextCustomer:

barber++; signal (b);

do not (chair > 0) -> wait (c); done;
chair--;

entry proc finishedCut:

open++; signal (o);

do not (exit > 0) -> wait (e); done;
exit--;

Old invariants:
C2: bavail >= cinchair >= bbusy
C3: bdone >= cleave >= bclose

New invariants:
C2: barber >= 0 && chair >= 0
C3: open >= 0 && exit >= 0

new binary variables:
barber = bavail - cinchair
chair = cinchair - bbusy
open = bdone - cleave
exit = cleave - bclose

value ranges: {0, 1}

insert call signal (x) call where a condition of x may become true:

©
 2

01
1

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

5. Data Parallelism: Barriers

Many processes execute the same operations at the same time on different data ;
usually on elements of regular data structures : arrays, sequences, matrices, lists.

Data parallelism as an architectural model of parallel computers :
vector machines , e. g. Cray
SIMD machines (Single Instruction Multiple Data), e. g. Connection Machine, MasPar
GPUs (Graphical Processing Units); massively parallel processors on graphic cards

Data parallelism as a programming model for parallel computers :

• computations on arrays in nested loops

• analyze data dependences of computations, transform and parallelize loops

• iterative computations in rounds , synchronize with Barriers

• systolic computations : 2 phases are iterated: compute - shift data to neighbour processes

Applications mainly in technical, scientific computing , e. g.

• fluid mechanics

• image processing

• solving differential equations

• finite element method in design systems

PPJ-38

©
 2

00
3

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Data parallelism as an architectural model

SIMD machine: Single Instruction Multiple Data

• very many processors, massively parallel
e. g. 32 x 64 processor field

• local memory for each processor

• same instructions in lock step

• fast communication in lock step

• fixed topology, usually a grid

• machine types e. g. Connection Machine, MasPar

PPJ-39

program field of processors

©
 2

00
3

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns
Data parallelism as a programming model

• regular data structures (arrays, lists) are mapped onto a field of processors

• processes execute the same program on individual data in lock step

• communication with neighbours in the same direction in lock step

simple example matrix addition:

sequential: data parallel:

for (i = 0; i < N; i++) distribute A, B
for (j = 0; j < M; j++) c = a + b 1 step!

c[i,j] = a [i,j] + b[i,j]; collect C

• these can be parallelized directly, since there are no data dependences

• data mapping is trivial: array element [i,j] on process [i,j]

• communication is not needed

• no algorithmic idea is needed

PPJ-40

C = A + B

©
 2

00
8

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Example prefix sums

input: sequence a of numbers;
output: sequence s of sums of the prefixes of a

PPJ-41

s[i] = Σ a[j]
j=0

i

+
+ +

+ +

a [0 1 2 3 4 5]

s [0 1 2 3 4 5]

a [0 1 2 3 4 5]

s []

+ +

+ + + +

+ +

+++
round
r = 0

1

2

+ s[i-1]

+ s[i-2]

+ s[i-4]

parallel algorithmic idea:

values: 5 3 1 2 1 3

results: 5 8 9 11 12 15

©
 2

00
9

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Example prefix sums (2)
PPJ-41a

s[i] = Σ a[j]
j=0

i
input:sequence a of numbers;
output:sequence s of sums of the prefixes of a

a [0 1 2 3 4 5]

s []

+ +

+ + + +

+ +

+++
round
r = 0

1

2

+ s[i-1]

+ s[i-2]

+ s[i-4]

parallel algorithmic idea:

Proof for process p = 0 .. n - 1

Invariant SUM: s[p] = a[p-d+1] + ... + a[p] with d = 1, 2, ..., m <= n distance before next round

Induction begin: d = 1; s[p] = a[p] holds by initialization

induction step : computation s[p] = s[p - d] + s[p]
a[p-2d+1] + ... + a[p-d] + a[p-d+1] + ... + a[p]

substitution of 2d by d implies SUM

©
 2

01
5

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Prefix sums: applied methods

• computational scheme reduction :
all array elements are comprised using a reduction operation (here: addition)

• iterative computation in rounds :
in each round all processes perform a computation step

• duplication of distance :
data is exchanged in each round with a neighbour at twice the distance as in the previous
round

• barrier synchronization:
processes may not enter the next round, before all processes have finished the previous one

PPJ-42

©
 2

00
3

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns
Barriers

Several processes meet at a common point of synchronization

Rule : All processes must have reached the barrier (for the j-th time),
before one of them leaves it (for the j-th time).

Applications :

• iterative computations, where iteration j uses results of iteration j-1

• separation of computational phases

Scheme :

public void run ()
{ do { computeNewValues (i);

b.barrier();
}

while (!converged);
}

Implementation techniques for barriers:

• central controller: monitor or coordination process

• worker processes coordinated as a tree

• worker processes symmetrically coordinated (butterfly barrier, dissemination barrier)

PPJ-43

©
 2

00
3

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Barrier implemented by a monitor

Monitor stops a given number of processes and releases them together:

class BarrierMonitor
{ private int processes // number of processes to be synchronized

arrived = 0; // number of processes arrived at the barrier

public BarrierMonitor (int procs)
{ processes = procs; }

synchronized public barrier ()
{ arrived++;

if (arrived < processes)
try { wait(); } catch (InterruptedException e) {}

// exception destroys barrier behaviour
else
{ arrived = 0; // reset arrival count

notifyAll(); // release the other processes
} } }

PPJ-44
©

 2
01

2
be

i P
ro

f.
D

r.
 U

w
e

K
as

te
ns

Distributed tree barrier

a

aa

a a a a

c

cc

c c c c

PPJ-45

2 synchronization variables (flags) at each node :

arrived : all processes in a subtree
have arrived,
is propagated upward

continue : all processes in a subtree
may continue,
is propagated downward

disadvantage:
different code is needed for
root, inner nodes, and for leafs

Barrier synchronization of the worker processes organized as a binary tree .
Bottleneck of central synchronization is avoided.

©
 2

01
2

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

2 Rules for Synchronization Using Flags
PPJ-45a

Flag for synchronization between exactly 2 processes

One process waits until the flag is set.
The other process sets the flag.

May be implemented by a monitor in Java.

Flag rules : 1. The process that waits for a flag resets it.
2. A flag that is set may not be set again before being reset.

Consequence: no state change will be lost.

process p

process q

waits for f==1 resets f:=0

ensures f==0 before sets f:=1

f==0 f==1 f==0

©
 2

01
2

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns
Distributed tree barrier implementation

2 synchronization variables (flags) at each node :

arrived: all processes in a subtree have arrived
propagated upward

continue: all processes in a subtree may continue
propagated downward

initially all flags are reset

code for an inner node:

leaf root
execute this.task(); x x
wait for left.arrived; reset left.arrived; x
wait for right.arrived; reset right.arrived; x
set this.arrived; x
wait for this.continue; reset this.continue; x
set left.continue; x
set right.continue; x

a

aa

a a a a

c

cc

c c c c

PPJ-45b

©
 2

01
2

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Symmetric, distributed barrier (dissemination)

Processes synchronize pairwise in rounds with doubled distances .

N processes are synchronized after r rounds if N <= 2r

In round s
process i indicates its arrival and then waits
for the arrival of process (i + N - 2s-1) modulo N:

After r rounds each process is synchronized with each other. Proof idea: For each process i
each other process occurs in a tree of processes which have synchronized (in)directly with i.

PPJ-46

0 1 2 3 4 5round
1

2

3

i(i + N - 2 s-1) modulo N

©
 2

01
2

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Symmetric, distributed barrier: implementation

In round s
process i indicates its arrival and
waits for the arrival of process (i + N - 2s-1) modulo N:

Code for each process:

PPJ-46a

i(i + N - 2 s-1) modulo N

execute this.task();

// synchronize:
s = 0;

while (N > 2 s)
s++;
wait for f==0; set f=1;

partner=p[(i + N - 2 s-1) modulo N];
wait partner.f; reset partner.f=0

©
 2

01
1

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Prefix sums with barriers

class PrefixSum extends Thread
{ private int procNo; // number of process

private BarrierMonitor bm; // barrier object

public PrefixSum (int p, BarrierMonitor b)
{ procno = p; bm = b; }

public void run ()
{ int addIt, dist = 1 ; // distance

// global arrays a and s
s[procNo] = a[procNo]; // initialize result array
bm.barrier();

// invariant SUM: s[procNo] == a[procNo-dist+1]+...+a[procNo]
while (dist < N)
{ if (procNo - dist >= 0)

addIt = s[procNo - dist]; // value before overwritten
bm.barrier();
if (procNo - dist >= 0)

s[procNo] += addIt;
bm.barrier();
dist = dist * 2; // doubled distance

} } }

PPJ-47

©
 2

00
3

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns
Prefix sums in a synchronous parallel programming model

Notation in Modula-2* with synchronous (and asynchronous) loops for parallel machines

VAR a, s, t: ARRAY [0..N-1] OF INTEGER;
VAR dist: CARDINAL;
BEGIN

...
FORALL i: [0..N-1] IN SYNC parallel loop in lock step

s[i] := a[i];
END;

dist := 1;

WHILE dist < N parallel loop in lock step
FORALL i: [0..N-1] IN SYNC

IF (i-dist) >= 0 THEN
t[i] := s[i - dist]; implicit barrier
s[i] := s[i] + t[i]; for each statement

END
END;
dist := dist * 2;

END
END

PPJ-48

©
 2

00
3

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Finding list ends: data parallel approach

input: int array link stores lists; link[i] contains the index of the successor or nil

output: int array last; last[i] contains the index of the last element of list link[i]

method: worker process i computes last[i] = last[last[i]] in log N rounds

int d = 1;
last[i] = link[i];
barrier

while (d < N)
{ int newlast = nil;

if (last[i] != nil &&
last[last[i]] != nil)

newlast = last[last[i]] ;
barrier
if (newlast != nil)

last[i] = newlast;
barrier
d = 2*d;

}

last[i] points to the end of those lists which are
not longer than d

PPJ-49

nilnilnil

nilnilnil

nilnilnil

©
 2

01
1

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

5.2 / 6. Data Parallelism: Loop Parallelization
C-5.11 / PPJ-50

Development steps (automated by compilers):

• nested loops operating on arrays ,
sequential execution of iteration space

• analyze data dependences
data-flow: definition and use of array elements

• transform loops
keep data dependences forward in time

• parallelize inner loop(s)
map to field or vector of processors

• map arrays to processors
such that many accesses are local,
transform index spaces

DECLARE B[0..N,0..N+1]

FOR I := 1 ..N
FOR J := 1 .. I

B[I,J] :=
B[I-1,J]+B[I-1,J-1]

END FOR
END FOR

N1

1

N

i

j

1-N

1 N

-1

i
j

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

1

N

1

-N

-1

i

N

j

Regular loops on orthogonal data structures - parallelized for data parallel processors

©
 2

00
9

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Iteration space of loop nests

Iteration space of a loop nest of depth n:

• n-dimensional space of integral points (polytope)

• each point (i1, ..., in) represents an execution of the innermost loop body

• loop bounds are in general not known before run-time

• iteration need not have orthogonal borders

• iteration is elaborated sequentially

C-5.12 / PPJ-51

DECLARE B[-1..N,-1..N]

FOR I := 0 .. N
FOR J := 0 .. I

B[I,J] :=
B[I-1,J]+B[I-1,J-1]

END FOR
END FOR

example:
computation of Pascal’s triangle

J

IN

N

©
 2

01
1

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns
Examples for Iteration spaces of loop nests

C-5.12a / PPJ-51a

J

IN

N

FOR I := 0 .. N
FOR J := 0 .. I

J

IN

N

FOR I := 0..N BY 2
FOR J := 0 .. I

J

IN

N

FOR I := 0 .. N
FOR J := 0..I BY 2

J

I

FOR I := 0 .. N
FOR J := I..I+M

M = 3, N = 4

M

N

J

I

FOR I := 0 .. M+N
FOR J := max(0, I-M)..

min (I, N)

M

N

M+N

©
 2

00
9

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Data Dependences in Iteration Spaces

Data dependence from iteration point i1 to i2 :

• Iteration i1 computes a value that is
used in iteration i2 (flow dependence)

• relative dependence vector
d = i2 - i1 = (i21 - i11, ..., i2n - i1n)
holds for all iteration points except at the border

• Flow-dependences can not be directed against
the execution order , can not point backward in time:
each dependence vector must be lexicographically
positive , i. e. d = (0, ..., 0, di, ...), di > 0

C-5.13 / PPJ-52

DECLARE B[-1..N,-1..N]

FOR I := 0 .. N
FOR J := 0 .. I

B[I,J] :=
B[I-1,J]+B[I-1,J-1]

END FOR
END FOR

Example:
Computation of Pascal´s triangle

(0,1)

(1,0)

(0,-1)

forward

backward (1,-5)

J

IN

N

©
 2

01
1

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Loop Transformation
C-5.14 / PPJ-53

non-linear transformations , e. g.

• Scaling : stretch the iteration space in
one dimension, causes gaps

• Tiling : introduce additional inner loops
that cover tiles of fixed size

linear basic transformations:

• Skewing : add iteration count of an
outer loop to that of an inner one

• Reversal : flip execution order
for one dimension

• Permutation : exchange two loops
of the loop nest

SRP transformations (next slides)

The iteration space of a loop nest is
transformed to new coordinates . Goals:

• execute innermost loop(s) in parallel

• improve locality of data accesses;
in space : use storage of executing processor,
in time : reuse values stored in cache

• systolic computation and communication scheme

Data dependences must point forward in time , i.e.
lexicographically positive and
not within parallel dimensions

scaling

tiling

C-5.14a / PPJ-54

Transformations
of

data

loop nests

convex polytope

©
 2

00
9

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns
Transformations defined by matrices

Transformation matrices: systematic transformation, check dependence vectors

C-5.14b / PPJ-55

() ((()))* = =
1

-1
0

0
i
j

i
-j

i’
j’

Reversal

() ((()))* = =
1

1
0

f
i
j

i
f* i+j

i’
j’

Skewing

() ((()))* = =
0

0
1

1
i
j

j
i

i’
j’

Permutation

©
 2

00
9

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Reversal

Iteration count of one loop is negated , that dimension is enumerated backward

C-5.15 / PPJ-55a

() ((()))* = =
1

-1
0

0
i
j

i
-j

ir
jr

loop variables
old new()1

1
-1

1
1

...

... 0

0

2-dimensional:

for i = 0 to M
for j = 0 to N

...

for ir = 0 to M
for jr = -N to 0

...

j

iM

N
jr irM

-N

original

transformed

general transformation matrix

©
 2

00
6

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Skewing

The iteration count of an outer loop is added to the count of an inner loop;
iteration space is shifted; execution order of iteration points remains unchanged

() ((()))* = =
1

1
0

f
i
j

i
f*i+j

is
js

loop variables
old new()1

1
1

1
1

...

... 0

0

2-dimensional:

for i = 0 to M
for j = 0 to N

...

for is = 0 to M
for js = f*is to N+f*is

...

j

iM

N

original

transformed

general transformation matrix:

f

js

isM

N

N+M

C-5.16 / PPJ-55b

©
 2

00
6

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Permutation

Two loops of the loop nest are interchanged ; the iteration space is flipped;
the execution order of iteration points changes; new dependence vectors must be legal.

() ((()))* = =
0

0
1

1
i
j

j
i

ip
jp

loop variables
old new()1

1
0
1

1
...

0 0

0

2-dimensional:

for i = 0 to M
for j = 0 to N

... for ip = 0 to N
for jp = 0 to M

...j

iM

N

original

transformed

general transformation matrix:

1

jp

ipN

M

1

C-5.17 / PPJ-55c

©
 2

00
9

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns
Use of Transformation Matrices

• Transformation matrix T defines new iteration counts in terms of the old ones: T * i = i´

• Transformation matrix T transforms old dependence vectors into new ones: T * d = d´

• inverse Transformation matrix T -1 defines old iteration counts in terms of new ones,
for transformation of index expressions in the loop body: T - 1 * i´ = i

• concatenation of transformations first T1 then T2 : T2 * T1 = T

C-5.18 / PPJ-56

() ((()))* = =
1

-1
0

0
i
j

i
-j

i’
j’

e. g. Reversal

() (())* =
1

-1
0

0
1
1

1
-1

e. g.

() (())* =
1

-1
0

0
e. g.

i’
j’

i’
-j’ ()=

i
j

()1
-1
0

0
e. g. (*

0
0
1

1) = (0
0
-1

1)

©
 2

00
6

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Inequalities Describe Loop Bounds

The bounds of a loop nest are described by a set of linear inequalities .
Each inequality separates the space in „inside and outside of the iteration space“:

positive factors represent upper bounds
negative factors represent lower bounds

C-5.19 / PPJ-56a

()(())≤*

-1
1
0
0

0
0

-1
1

i
j

0
M
0
N

B * i ≤ c

1 -i ≤ 0

2 i ≤ Μ

3 -j ≤ 0

4 j ≤ Ν

1 2

3

4

()(())*

-1
1
0
0

1
0

-1
1

i
j

0
M
0
N

1 -i +j ≤ 0

N

M

1 2

3

4
N

M

example 1

example 2

≤
2 i ≤ Μ

3 -j ≤ 0

4 j ≤ Ν

transformed

1, 4: j ≤ min (i, N)

3: 0 ≤ j

1+ 3: 0 ≤ i

2: i ≤ M

©
 2

00
6

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Transformation of Loop Bounds

The inverse of a transformation matrix T - 1 transforms a set of inequalities: B * T - 1 i’ ≤ c

C-5.20 / PPJ-56b

)(()*
i’
j’

0
M
0
N

1 -i´ ≤ 0

2 i´ ≤ Μ

3 i´ - j´ ≤ 0

4 -i´ + j´ ≤ Ν

)(1
1

0

1)(1
-1

0

1

skewing inverse

()-1
1
0
0

0
0

-1
1

*)(1
-1

0

1 ()-1
1
1
-1

0
0

-1
1

()-1
1
1
-1

0
0

-1
1

B T - 1 B * T - 1

B * T - 1 i’ c

example 1

1

2

3

4

N

M

new bounds:

=

≤

©
 2

00
6

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Example for Transformation and Parallelization of a Loop

for i = 0 to N
for j = 0 to M

a[i, j] = (a[i, j-1] + a[i-1, j]) / 2;

Parallelize the above loop.

1. Draw the iteration space.

2. Compute the dependence vectors and draw examples of them into the iteration space.
Why can the inner loop not be executed in parallel?

3. Apply a skewing transformation and draw the iteration space.

4. Apply a permutation transformation and draw the iteration space.
Explain why the inner loop now can be executed in parallel.

5. Compute the matrix of the composed transformation and
use it to transform the dependence vectors.

6. Compute the inverse of the transformation matrix and
use it to transform the index expressions.

7. Specify the loop bounds by inequalities and
transform them by the inverse of the transformation matrix.

8. Write the complete loops with new loop variables ip and jp and new loop bounds.

C-5.21 / PPJ-56c

©
 2

00
6

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns
Solution of the Transformation and Parallelization Example

1 -jp ≤ 0
2 jp ≤ Ν
3 -ip+jp ≤ 0
4 ip - jp ≤ Μ

()0
0

-1
1

-1
1
1

-1

B * T - 1

()0N0
M

()-1
1
0
0

0
0
-1
1

B
1, 3 => 0 ≤ ip

2, 4 => ip ≤ M+N

1, 4 => max (0, ip-M) ≤ jp

2, 3 => jp ≤ min (ip, N)

c7. Bounds:
new:orig.:

C-5.22 / PPJ-56d

M=4

N=7

M=4

M=4 M+N

N=7

M+N

N=7

()1 1
1 0 ()0

1 ()1
0

= ()1 1
1 0 ()1

0 ()1
1

=

i

j

jp

ip

()0 1
1 -1

Inverse

1., 2.: 3.: 4.:

5.: 6.:

8. for ip = 0 to M+N
for jp = max (0, ip-M) to min (ip, N)

a[jp, ip-jp] = (a[jp, ip-jp-1] + a[jp-1, ip-jp]) / 2;

Transformation and Parallelization
C-5.23 / PPJ-57

Iteration space
original

DECLARE B[-1..N,-1..N]

FOR IS := 0.. N
FOR JS := -IS .. 0

B[IS,JS+IS] :=
B[IS-1,JS+IS]+B[IS-1,JS-1+IS]

END FOR
END FOR

J

IN

N

DECLARE B[-1..N,-1..N]

FOR I := 0 .. N
FOR J := 0 .. I

B[I,J] :=
B[I-1,J]+B[I-1,J-1]

END FOR
END FOR

N

-N

IS
JS

parallel processor map
JS mod 2

transformed
(I, J) -> (I, J-I) = (IS, JS)

sequential time IS

©
 2

01
1

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Data Mapping
C-5.24 / PPJ-58

Goal :
Distribute array elements over processors, such that
as many accesses as possible are local.

Index space of an array:
n-dimensional space of integral index points (polytope)

• same properties as iteration space

• same mathematical model

• same transformations are applicable
(Skewing, Reversal, Permutation, ...)

• no restrictions by data dependences

Data distribution for parallel loops
C-5.25 / PPJ-59

DECLARE B[-1..N,-N..N]
...

B[IS,JS] :=
B[IS-1,JS-1]+B[IS-1,JS-1]

index space of B
original transformed

skewing f=-1
(i,j) -> (i,j-i)

J

IN

N

Data on P0

P0
writ

es
 B

[I,
J]

50% local
100%local

N

-N

I

J

N

DECLARE B[-1..N,-1..N]

FOR IS := 0.. N
FOR JS := -IS .. 0

B[IS,JS+IS] :=
B[IS-1,JS+IS]+B[IS-1,JS-1+IS]

END FOR
END FOR

©
 2

01
0

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns
7. Asynchronous Message Passing

Processes send and receive messages via channels

Message : value of a composed data type or object of a class

Channel : queue of arbitrary length, containing messages

operations on a channel:

• send (b) : adds the message b to the end of the queue of the channel;
does not block the executing process (in contrast to synchronous send)

• receive() : yields the oldest message and deletes it from the channel;
block s the executing process as long as the channel is empty.

• empty() : yields true, if the channel is empty; the result is not necessarily up-to-date.

send and receive are executed under mutual exclusion.

PPJ-60

sendreceive

©
 2

01
0

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Channels implemented in Java

public class Channel
{ // implementation of a channel using a queue of messages

private Queue msgQueue;

public Channel ()
{ msgQueue = new Queue (); }

public synchronized void send (Object msg)
{ msgQueue.enqueue (msg); notify() ; } // wake a receiving process

public synchronized Object receive ()
{ while (msgQueue.empty())

try { wait() ; } catch (InterruptedException e) {}
Object result = msgQueue.front(); // the queue is not empty
msgQueue.dequeue();
return result;

}

public boolean empty ()
{ return msgQueue.empty (); }

}

All waiting processes wait for the same condition => notify() is sufficient.
After a notify-call a new receive-call may have stolen the only message => wait loop is needed

PPJ-61
©

 2
00

3
be

i P
ro

f.
D

r.
 U

w
e

K
as

te
ns

Processes and channels

link :
one sender is connected to one receiver ;
e. g. processes form chains of
transformation steps (pipeline)

input port of a process:
many senders - one receiver;
channel belongs to the receiving process;
e. g. a server process receives tasks
from several client processes

output port of a process:
one sender - many receivers ;
channel belongs to the sending process;
e. g. a process distributes tasks to many servers
(unusual structure)

pair of request and reply channels;
one process requests - the others replies;
tight synchronization,
e. g. between client and server

PPJ-62

pq

request

reply

S
er

ve
r

C
lie

nt

link

input port

output port
©

 2
01

5
be

i P
ro

f.
D

r.
 U

w
e

K
as

te
ns

Termination conditions
PPJ-62a

When system of processes terminates the following conditions must hold:

1. All channels are empty.

2. No processes are blocked on a receive operation.

3. All processes are terminated .

Otherwise the system state is not well-defined , e.g. task is not
completed, some operations are pending.

Problem:
In general, the processes do not know the global system state .

©
 2

00
3

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns
Message structures

PPJ-63

A message object may have arbitrary structure suitable for the particular purpose :

empty

kind

kind

argument
vector

synchronization only

different kinds of messages, without data
e. g. signal different kinds of events

different kinds of messages with data
e. g. number and or identities of resources

special case:
a channel on which the sender expects a reply

Operations on messages:
constructors

setKind (k), getKind ()

setArg (ind, val), getArg (ind), getArgList ()

©
 2

00
3

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Client / server: basic channel structure

One server process responds to requests of several client processes

request channel:
input port of the server

reply channel:
one for each client (input port),
may be sent to the server included in the request message

Application : server distributes data or work packages on requests

PPJ-64

request reply

server

client

reply client

...

©
 2

01
5

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Server processes: different kinds of operations

Different requests (operations) are represented by different kinds of messages .

The server processes the requests strictly sequentially ;
thus, it is guaranteed that critical sections are not executed interleaved .

Termination: terminate clients, empty channel, empty queue.

PPJ-65

request

server

pending

If a request requires a specific condition
it is stored in a queue until the condition holds.

put put get put

reply channels

©
 2

01
5

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Different kinds of operations on different channels

Server must not block on an empty input port while another port may be non-empty:

while (running) {
if (!putPort.empty()) { msg = putPort.receive(); ... }
if (!getPort.empty()) { msg = getPort.receive(); ... }
if (!pending.empty()) { msg = pending.dequeue(); ... }

}

PPJ-66

put requests

server

pending

get requests

reply channels

©
 2

01
5

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns
Several servers

Several server processes, several client processes, several request channels

Termination: empty request channels, empty queues, empty reply channels

Caution: a receive on a channel may block a server!

PPJ-67

put

reply

server

client

reply client

...

server

...

get

©
 2

00
3

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Receive without blocking

If several processes receive from a channel ch , then the check

if (!ch.empty()) msg = ch.receive();

may block.
That is not acceptable when several channels have to be checked in turn.
Hence, a new non-blocking channel method is introduced:

public class Channel
{ ...

public synchronized Object receiveMsgOrNull ()
{ if (msgQueue.empty()) return null;

Object result = msgQueue.front();
msgQueue.dequeue();
return result;

} }

Checking several channels:

while (msg == null)
{ if ((msg = ch1.receiveMsgOrNull()) == null)

if ((msg = ch2.receiveMsgOrNull()) == null)
Thread.sleep (500);

}

PPJ-68
©

 2
01

5
be

i P
ro

f.
D

r.
 U

w
e

K
as

te
ns

Conversation sequences between client and server

Example for an application pattern is „file servers“:

• several equivalent servers respond to requests of several clients

• a client sends an opening request on a channel common for all servers (open)

• one server commits to the task; it then leads a conversation with the client according to a
specific protocol , e. g.
(open openReply) ((read readReply) | (write writeReply))* (close closeReply)

• reply channels are contained in the open and openReply messages.

PPJ-69

server

access

server access accessReply client

open

accessReply client

... ...

accessReply

openReply

accessReply
©

 2
01

5
be

i P
ro

f.
D

r.
 U

w
e

K
as

te
ns

Active monitor (server) vs. passive monitor

active monitor passive monitor

1. program structure
active process passive program module

2. client communication
request - reply via channels calls of entry procedures

3. server operations
kinds of messages and/or entry procedures
different channels

4. mutual exclusion
requests are handled guaranteed for entry procedure
sequentially calls

5. delayed service
queue of pending requests client processes are blocked
replies are delayed condition variables, wait - signal

6. multiple servers
may cooperate on the multiple monitors are not related
same request channels

PPJ-70

©
 2

01
2

be
i P

ro
f.

 D
r.

 U
w

e
K

as
te

ns
8. Messages in Distributed Systems

Distributed processes: Broadcast in a net of processors

PPJ-71

1

2 3

4

5 6 7 6 7

Net: bi-directional graph, connected, irregular structure;
node: a process
edge: a pair of links (channels) which connect two nodes in both directions

A node knows only its direct neighbours and the links to and from each neighbour:

Broadcast:
A message is sent from an initiator node such that it reaches every node in the net.
Finally all channels have to be empty.

Problems:

• graph may have cycles

• nodes do not know the graph beyond their neighbours

©
 2

01
1

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Broadcast method

Method (for all nodes but the initiator node):

1. The node waits for a message on its incoming links.

2. After having received the first message it sends a copy to all of its n neighbours -
including to the sender of the first message

3. The node then receives n-1 redundant messages from the remaining neighbours

All nodes are finally reached because of (2).

All channels are finally empty because of (3).

The connection to the sender of the first message is considered to be an edge of a spanning
tree of the graph. That information may be used to simplify subsequent broadcasts.

PPJ-72

total number of messages: 2*|edges|

initiator

1

2 3

4

5 6 7

©
 2

00
8

be
i P

ro
f.

 D
r.

 U
w

e
K

as
te

ns

Probe and echo in a net

Task: An initiator requests combined information from all nodes in the graph (probe).
The information is combined on its way through the net (echo);
e. g. sum of certain values local to each node, topology of the graph, some global state.

Method (roughly):

• distribute the probes like a broadcast,

• let the first reception determine a spanning tree,

• return the echoes on the spanning tree edges.

PPJ-73

initiator

E E
E

E E E1

2 3

4

5 6 7

©
 2

01
1

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Probe and echo: detailed operations

Operations of each node (except the initiator):

• The node has n neighbours with an incoming and outgoing link to each of them.

• After having received the first probe
from neighbour s , send a
probe to all neighbours except to s ,
i. e. n - 1 probes .

• Each further incoming probe
is replied with a dummy message.

• Wait until n - 1 dummies and echoes
have arrived.

• Then combine the echoes and send it to s .

2 messages are sent on each spanning tree edge .

4 messages are sent on each other edge .

PPJ-74

P

1. P
P

P

E

E

D

P

D

E

©
 2

00
3

be
i P

ro
f.

 D
r.

 U
w

e
K

as
te

ns
Connections via ports and sockets

Port:
• an abstract connection point of a computer; numerically encoded

• a sever process is determined to respond to a certain port, e. g. port 13: date and time

• client processes on other machines may send requests via machine name and port number

Socket:
• Abstraction of network software for communication via ports.

• Sockets are created from machine address and port number.

• Several sockets on one port may serve several clients.

• I/O streams can be setup on a socket.

PPJ-75

client

client

host

server

sockets
port

I/O streams

I/O streams

©
 2

00
3

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Sockets and I/O-streams

Get a machine address:

InetAddress addr1 = InetAddress.getByName ("java.sun.com"),
addr2 = InetAddress.getByName ("206.26.48.100"),
addr3 = InetAddress.getLocalHost();

Client side : create a socket that connects to the server machine:

Socket myServer = new Socket (addr2, port);

Setup I/O-streams on the socket:

BufferedReader in =
new BufferedReader

(new InputStreamReader (myServer.getInputStream()));

PrintWriter out =
new PrintWriter (myServer.getOutputStream(), true);

Server side : create a specific socket, accept incoming connections:

ServerSocket listener = new ServerSocket (port);
...
Socket client = listener.accept(); ... client.close();

PPJ-76
©

 2
01

5
be

i P
ro

f.
D

r.
 U

w
e

K
as

te
ns

Worker paradigm
PPJ-77

A task is decomposed dynamically in a bag of subtasks .
A set of worker processes of the same kind

solve subtasks of the bag and may create new ones .

Speedup if the processes are executed
in parallel on different processors.

Applications : dynamically decomposable tasks, e.g.

• solving combinatorial problems with methods like
Branch & Bound, Divide & Conquer, Backtracking

• image processing

general process structure:

manager process
manages the subtasks to be solved and
combines the solutions of the subtasks

worker process
solves one subtask after another,
creates new subtasks, and
provides solutions of subtasks.

manager

subtasks

solutions

worker

worker

. . .

©
 2

01
5

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Branch and Bound

Algorithmic method for the solution of combinatorial problems (e. g. traveling salesperson)

tree structured solution space is searched for a best solution

General scheme of operations:

• partial solution S is extended to S1, S2, ... (e. g. add an edge to a path)

• is a partial solution valid ? (e. g. is the added node reached the first time?)

• is S a complete solution? (e. g. are all nodes reached)

• MinCost (S) = C: each solution that can be created from S has at least cost C
(e. g. sum of the costs of the edges of S)

• Bound : costs of the best solution so far.

Data structures: a queue sorted according to MinCost; a bound variable

sequential algorithm:
iterate until the queue is empty:

remove the first element and extend it
check the thus created new elements
a new solution and a better bound may be found
update the queue

PPJ-78

©
 2

01
5

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns
B&B example: Travelling sales person

PPJ-78a

A

AB AC AD
5 20 10

1

2 3 4

Connection graph

Solution space

order of node creation

path

cost so far

no choice

ABC ABE
15 8

5 6

ABEC ABED
13 11

7 8

ADC ADE

12 13

9 10

ABEDC
13

11

ADCB ADCE
22 17

12 13

ABEDCA
33

14

Solution

ABECD
15

15

ADEC ADEB
18 16

16 17

ABECDA
25

25
18

19 20
ABCD ABCE

17 20

ADEBC
26

21 X
ABCDE
20

22 X
ADCEB

20

23
ADECB

28

24 X

ADCEBA
25

25
25

ABCED
23

26

ACB ACD ACE
30 22 25

27 28 29 XX

30
ADCBE
25

X

ACDE
25

31 X

ABCEDA
33

32

A B

C

D E

5

20

10 2

3

5

10

3

©
 2

00
6

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Parallel Branch & Bound (central)

A central manager process holds the queue and the bound variable

Each worker process extends an element, checks it, computes its costs, and a new bound

Protocol : reqEl (getEl [getBound] (putEl | putBound)* reqEl)* terminate
for a single Worker

PPJ-79

reqEl

getEl

putEl

putBound

getBound

terminate

manager

queue

bound

workeri

©
 2

00
3

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Parallel Branch & Bound (distributed)

Several manager processes cooperate - one for each worker process.

The work load is balanced between neighbours, e. g. organized in a ring

PPJ-80

...

interface
as in PPJ-79

...

manageri workeri

manageri+1 workeri+1

reqLoad

getLoad

newBound

Termination condition :

• all workers are inactive,

• no manager has another task

• all task channels are empty

©
 2

00
3

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Termination in a ring

Task: Determine a global state of processes that communicate in a directed ring , and
inform all processes, e. g. „all processes are inactive“.

Idea: A token rotates through the ring and marks the processes (yellow)
that have reached the state in question (inactive).
At the end of the marked sequence the mark may be reset again.
When the token reaches the end of the marked sequence, the state holds globally

PPJ-81

receives the
token again

has no work and
receives the token

receives
work again

©
 2

01
1

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns
Method calls for objects on remote machines (RMI)

Remote Method Invocation (RMI) : Call of a method for an object that is on a remote machine

In Java RMI is available via the library java.rmi.

Comparable techniques : CORBA with IDL, Microsoft DCOM with COM

Tasks :

• identify objects across machine borders (object management, naming service)

• interface for remote accesses and executable proxies for the remote objects (skeleton, stub)

• method call , parameter and result are transferred (object serialization)

PPJ-82

server
object

put (..) {...}

port
client

r.put(x, y);

©
 2

00
5

be
i P

ro
f.

 D
r.

 U
w

e
K

as
te

ns

RMI in Java

remote interface: special requirements for interface methods

registry: system process for the machine and for a port;
establishes relations between names and object references

server skeleton: proxy of the server for remote accesses to server objects,
performs I/O transfer on the server side,

client stub: proxy of the server, performs I/O transfer on the client side

PPJ-83

server-
object

put (..) {...}

port
client

serv.put(x, y);

registry
name serv

skeleton stub

remote
interface

remote
interface

©
 2

00
5

be
i P

ro
f.

 D
r.

 U
w

e
K

as
te

ns

RMI development steps

Example: make a Hashtable available as a server object

1. Define a remote interface:
public interface RemoteMap extends java.rmi.Remote
{ public Object get (Object key) throws RemoteException; ...}

2. Develop an adapter class to adapt the server class to a remote interface:
public class RemoteMapAdapter extends UnicastRemoteObject

implements RemoteMap
{ public RemoteMapAdapter (Hashtable a) { adaptee = a; }

public Object get (Object key) throws RemoteException
{ return adaptee.get (key); }
...

}

3. Server main program creates the server object and enters it into the registry:
Hashtable adaptee = new Hashtable();
RemoteMapAdapter adapter = new RemoteMapAdapter (adaptee);
Naming.rebind (registeredObjectName, adapter);

4. Generate the skeleton and stub from the adapted server class;
copy the client stub on to the client machine:
rmic RemoteMapAdapter

PPJ-84

©
 2

01
1

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

RMI development steps (continued)

5. Client identifies the server object on a target machine and calls methods:
Registry remoteRegistry = LocateRegistry.getRegistry (hostName);
RemoteMap serv = (RemoteMap) remoteRegistry.lookup (remObjectName);
v = serv.get (key);

6. Start a registry on the server machine:
rmiregistry [port] &
Default Port is 1099

7. Start some servers on the server machine.

8. Start some clients on client machines.

PPJ-85

©
 2

00
3

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns
Objects as parameters of RMI calls

Parameters and results of RMI calls are transferred via I/O streams.

That is straight-forward for values of basic types and strings .

For objects in general :
The values of their variables are transferred,
on the receiver side a new object is created from those values.

The class of such objects has to implement the interface Serializable :

import java.io.Serializable;

class SIPair implements java.io.Serializable
{ private String s;

private int i;

public SIPair (String a, int b) { s = a; i = b; }
public String toString () { return s + "-" + i; }

}

PPJ-86

©
 2

01
3

be
i P

ro
f.

 D
r.

 U
w

e
K

as
te

ns

9. Synchronous message passing
PPJ-87

Processes communicate and synchronize directly,
space is provided for only one message (instead of a channel).

Operations:

• send (b): blocks until the partner process is ready to receive the message

• receive (v): blocks until the partner process is ready to send a message.

When both sender and receiver processes are ready for the communication,
the message is transferred, like an assignment v := b;

A send-receive-pair is both data transfer and synchronization point

Origin: Communicating Sequential Processes (CSP) [C.A.R. Hoare, CACM 21, 8, 1978]

sendreceive

v

pq

©
 2

01
3

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Notations for synchronous message passing
PPJ-88

Notation in CSP und Occam:

p: ... q ! ex ... send the value of the expression ex to process q

q: ... p ? v ... receive a value from process p and assign it to variable v

multiple ports and composed messages may be used:

p: ... q ! Port1 (a1,..,an) ...

q: ... p ? Port1 (v1,..,vn) ...

Example : copy data from a producer to a consumer:

Prod: var p: int;
do true -> p :=...; Copy ! p od

Copy: var x: int;
do true -> Prod ? x; Cons ! x od

Cons: var c: int;
do true -> Copy ? c; ... od

Prod

Copy

Cons

x

c

©
 2

01
5

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Selective wait
PPJ-89

Guarded command: (invented by E. W. Dijkstra)
a branch may be taken, if a condition is true and a communication is enabled (guard)

if Condition1; p ! x -> Statement1
[] Condition2; q ? y -> Statement2
[] Condition3; r ? z -> Statement3
fi

A communication statement in a guard yields

true , if the partner process is ready to communicate

false , if the partner process is terminated,

open otherwise (process is not ready, not terminated)

Execution of a guarded command depends on the guards:

• If some guards are true , one of them is chosen,
the communication and the branch statement are executed.

• If all guards are false the guarded command is completed without executing anything.

• Otherwise the process is blocked until one of the above cases holds.

Notation of an indexed selection :

if (i: 1..n) Condition; p[i] ? v -> Statements fi

©
 2

01
5

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns
Guarded loops

PPJ-90

A guarded loop repeats the execution of its guarded
command until all guards yield false:

do
Condition1; p ! x-> Statement1

[] Condition2; r ? z-> Statement2
od

Example : bounded buffer:

process Buffer
do

cnt < N; Prod ? buf[rear] -> cnt++; rear := rear % N + 1;
[] cnt > 0; Cons ! buf[front] -> cnt--; front := fron t % N + 1;
od

end

process Prod
var p:=0: int;
do p<42; Buffer ! p -> p:=p+1;
od

end

process Cons
var c: int;
do Buffer ? c -> print c;
od

end

©
 2

00
3

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Prefix sums computed with synchronous messages

Synchronous communication provides both transfer of data and synchronization.

Necessary synchronization only (cf. synchronous barriers, PPJ-48)

const N := 6; var a [0:N-1] : int;

process Worker (i := 0 to N-1) a process for each element
var d := 1, sum, new: int

sum := a[i];

{ Invariant SUM: sum = a[i-d+1] + ... + a[i]}
do d < N-1 ->

if (i+d) < N -> Worker(i+d) ! sum fi shift old value to the right

if (i-d) >= 0-> Worker(i-d) ? new; sum := sum + new fi
get new value from the left

d := 2*d double the distance
od {SUM and d >= N-1}

end

Why can deadlocks not occur?

PPJ-91
©

 2
01

5
be

i P
ro

f.
D

r.
 U

w
e

K
as

te
ns

No deadlocks in synchronous prefix sums
PPJ-92

sychronization pattern
0

i

N-1

i-d i+d
j-d j

• ! and ? operations occur always in pairs :

if i+d < N and i>=0 process i executes Worker(i+d)!sum
let j = i+d, i.e. j-d = i >= 0, hence process j executes Worker(j-d)?new

• There is always a process that does not send but receives :

Choose i such that i<N and i+d >= N, then process i only receives:
Prove by induction.

• As no process first receives and then sends , there is no deadlock

©
 2

01
5

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Client/Server scheme with synchronous messages

Technique :
for each kind of operation that the server offers, a communication via 2 ports :

• oprReq for transfer of the parameters

• oprRepl for transfer of the reply

Scheme of the client processes :

process Client (I := 1 to N)
...
Server ! oprReq (myArgs)
Server ? oprRepl (myRes)
...

end

Scheme of the server process :

process Server ()
...
do (c: 1..N) ConditionOpr1; Client[c] ? oprReq(oprArgs)

-> process the request ...
Client[c] ! oprRepl(oprResults)

[] correspondingly for other operations ...
od

end

PPJ-93

©
 2

01
5

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns
Synchronous Client/Server: variants and comparison

PPJ-94

Synchronous servers have the
same characteristics as asynchronous servers ,
i. e. active monitors (PPJ-70).

Variants of synchronous servers :

1. Extension to multiple instances of servers :
use guarded command loops to check
whether a communication is enabled

2. If an operation can not be executed immediately ,
it has to be delayed, and
its arguments have to be stored in a pending queue

3. The reply port can be omitted if
- there is no result returned, and
- the request is never delayed

4. Special case: resource allocation with request and release.

5. Conversation sequences are executed in the part „process the request“.
Conversation protocols are implemented by a
sequence of send, receive, and guarded commands.

©
 2

01
5

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Synchronous messages in Occam
PPJ-94a

Occam:

• concurrent programming language, based on CSP

• initially developed in 1983 at INMOS Ltd. as native
language for INMOS Transputer systems

• a program is a nested structure of
parallel processes (PAR), sequential code blocks
(SEQ), guarded commands (ALT), synchronous
send (!) and receive (?) operations, procedures,
imperative statement forms;

• communication via 1:1 channels

• fundamental data types, arrays, records

• extended 2006 to Occam-pi, University of Kent, GB
pi-calculus (Milner et. al, 1999):
formal process calculus where names of channels
can be communicated via channels
Kent Retargetable occam Compiler (KRoC)
(open source)

CHAN OF INT chn:
PAR

SEQ
INT a:
a := 42
chn ! a

SEQ
INT b:
chn ? b
b := b + 1

©
 2

01
5

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Bounded Buffer in Occam
PPJ-94aa

CHAN OF Data in, out :
PAR

SEQ -- process buffer
Queue (k) buf:
Data d:
WHILE TRUE

ALT
in ? d & length(buf) < k

enqueue(buf, d)
out ! front(buf) & length(buf) > 0

! not allowed in a guard
dequeue(buf)

SEQ
-- only one producer process
Data d:
WHILE TRUE

SEQ
d = produce ()
in ! d

SEQ
-- only one consumer process
Data d:
WHILE TRUE

SEQ
out ? d
consume (d)

©
 2

01
5

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Synchronous rendezvous in Ada
PPJ-94b

task type Producer;

task body Producer is
d: Data;

begin
loop

d := produce ();
Buffer.Put (d);

end loop;
end Producer;

task type Consumer;

task body Consumer is
d: Data;

begin
loop

Buffer.Get (d);
consume (d);

end loop;
end Consumer;

Ada:

• general purpose programming language
dedicated for embedded systems

• 1979: Jean Ichbiah at CII-Honeywell-Bull
(Paris) wins a competition of language
proposals initiated by the US DoD

• Ada 83 reference manual

• Ada 95 ISO Standard, including oo constructs

• Ada 2005, extensions

• concurrency notions:
processes (task , task type), shared data,
synchronous communication (rendezvous),
entry operations pass data in both directions,
guarded commands (select , accept)

©
 2

01
5

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns
Ada: Synchronous rendezvous

PPJ-94ba

task type Producer;

task body Producer is
d: Data;

begin
loop

d := produce ();
Buffer.Put (d);

end loop;
end Producer;

task type Consumer;

task body Consumer is
d: Data;

begin
loop

Buffer.Get (d);
consume (d);

end loop;
end Consumer;

task type Buffer is -- interface
entry Put (d: in Data); -- input port
entry Get (d: out Data); -- output port

end Buffer;

task body Buffer is
buf: Queue (k);
d: Data;

begin
loop

select -- guarded command
when length(buf) < k =>

accept Put (d: in Data) do
enqueue(buf, d);

end Put;
or
when length(buf) > 0 =>

accept Get (d: out Data) do
d := front(buf);

end Get;
dequeue(buf);

end select;
end loop;

end Buffer;

©
 2

01
5

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

10. Concurrent and functional programming
PPj-94c

Overview

1. Pure functional programs do not have side-effects :
operands of an operation and arguments of a call
can be evaluated in any order , in particular concurrently

2. Recursive task decomposition can be parallelized according to the
paradigm bag of subtasks

3. Lazy evaluation of lists leads to programs that transform streams , can be
parallelized according the pipelining paradigma

4. Dataflow languages and dataflow machines support stream programming

5. Concurrency notions in functional languages :
Message passing in Erlang
Actors in Scala

©
 2

01
3

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Recursive adaptive quadrature computation
PPj-94d

fun quad (f, l, r, area, eps) =
let m = (r-l)/2 and

fl = f(l) and
fm = f(m) and
fr = f(r) and
larea = (fl+fm)*(m-l)/2 and
rarea = (fm+fr)*(r-m)/2 and

in
if abs(larea+rarea-area)>eps
then
let

lar = quad(f,l,m,larea,eps) and

rar = quad(f,m,r,rarea,eps)

in (lar+rar)
end
else area

end

initial call:

quad (f,a,b,(f(a)+f(b)/2*(b-a),0.001)

f(x)

x

y

a bm =
(b-a)/2

(f(a)+f(m))/2 *

∫
a

b
f(x) dx

(m-a)

Compute an approximation of the
integral over f(x) between a and b.

Recursively refine the interval into
two subintervals until the sum of the
areas of the two trapezoids differs
less than eps from the area of the big
trapezoid .

See [G. Andrews: Foundations of Multithreaded,
Parallel, and Distributed Programming, Addison
Wesley, 2000, pp. 17-19]

©
 2

01
3

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Recursive adaptive quadrature computation
PPj-94e

fun quad (f, l, r, area, eps) =
let m = (r-l)/2 and

fl = f(l) and
fm = f(m) and
fr = f(r) and
larea = (fl+fm)*(m-l)/2 and
rarea = (fm+fr)*(r-m)/2 and

in
if abs(larea+rarea-area)>eps
then
let

co
lar = quad(f,l,m,larea,eps) and
//
rar = quad(f,m,r,rarea,eps)
oc

in (lar+rar)
end
else area

end

initial call:

quad (f,a,b,(f(a)+f(b)/2*(b-a),0.001)

f(x)

x

y

a bm =
(b-a)/2

(f(a)+f(m))/2 *

∫
a

b
f(x) dx

(m-a)

Compute an approximation of the
integral over f(x) between a and b.

Recursively refine the interval into
two subintervals until the sum of the
areas of the two trapezoids differs
less than eps from the area of the big
trapezoid .
Fork two concurrent processes.

See [G. Andrews: Foundations of Multithreaded,
Parallel, and Distributed Programming, Addison
Wesley, 2000, pp. 17-19]

©
 2

01
3

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns
Streams in functional programming

PPj-94f

Linear lists are fundamental data structures in functional programming, e.g. in SML:

datatype ’a list = nil | :: of ’a * ’a list

Eager evaluation: all elements of a list are to be computed, before any can be accessed.
Lazy evaluation only those elements of a list are computed which are going to be accessed.

That can be achieved by replacing the (pointer to) the tail of the list by a parameterless
function which computes the tail of the sequence when needed :

datatype ’a seq= Nil | Cons of ’a * (unit->’a seq)

Lazy lists are called streams .

Streams establish a useful programming paradigm :
Programming the creation of a stream can be separated from programming its use .

producerconsumer
stream

sequence of numbers
random numbers
iterate approximations
enumerate solutions space

summarize
use random numbers
decide upon convergence
decide upon solution

Functions on streams can be understood as communicating concurrent processes.

©
 2

01
5

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Examples for stream functions (1)
PPJ-94g

produce a stream of numbers: int -> int seq
fun from k = Cons (k, fn()=> from (k+1));

consume the first n elements into a list: 'a seq * int -> 'a list
fun take (xq, 0) = []
| take (Nil, n) = raise Empty
| take (Cons(x, xf), n) = x :: take (xf () , n - 1);

transform a stream of numbers: int seq -> int seq
fun squares Nil = Nil
| squares (Cons (x, xf)) = Cons (x * x, fn() => squares (xf()));

take (squares (from 1), 10);

from 1squarestake 10
1 2 3...1 4 9...

©
 2

01
3

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Examples for stream functions (2)
PPJ-94h

add the numbers of two streams: int seq * int seq -> int seq
fun add (Cons(x, xf),Cons(y, yf)) =

Cons (x+y, fn() => add (xf(), yf()))
| add _ = Nil;

from 0

take 10

0 1 2 ...

from 50
50 51 52...

add50 52 54 56...

Filter-Schema:
('a -> bool) -> 'a seq -> 'a seq

fun filter pred Nil = Nil
| filter pred (Cons(x,xf)) =

if pred x then Cons (x, fn()=> filter pred (xf()))
else filter pred (xf());

filter

pred

©
 2

01
3

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Recursive stream composition
PPJ-94i

fun sift p =
filter (fn n => n mod p <> 0);

fun sieve (Cons(p,nf)) =
Cons (p, fn() => sieve (sift p (nf())));

val primes = sieve (from 2);

take (primes, 25);

from

2
hd

tl

siftsieve

primes
hd

tl

sieve:

sift:

eliminate
multiples of p

p

Compute prime
numbers:

Sieve of
Eratosthenes

All recursively constructed sift-sieve-pairs can execute concurrently!

©
 2

01
3

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns
Sieve of Eratosthenes in CSP

PPj-94j

process Sieve[1]
for [1 = 3 to n by 2]

Sieve[2] ! i # pass odd numbers to Sieve[2]

process Sieve[i = 2 to L]
int p, next
Sieve[i-1] ? p # p is a prime
do Sieve[i-1] ? next -># receive next candidate

if (next mod p)!=0 ->
Sieve[i+1] ! next # pass it on

fi
od

A pipeline of filters:

L processes are created, each sends a stream of numbers to its successor.

The first number p received is a prime. It is used to filter the following numbers.

Finally, each process holds a prime in p.

[G. Andrews: Foundations of Multithreaded, Parallel, and Distributed Programming, Addison Wesley, 2000, pp. 326-328]

©
 2

01
5

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Dataflow languages
PPj-94k

Textual languages:

Lucid: stream computations by equations, no side
effects; 1976, Wadge, Ashcroft

SISAL : (Streams and Iteration in a Single
Assignment Language), no side-effects, fine-
grained parallelization by compiler, 1983

Prograph (Acadia University 1983):
dataflow and object-oriented

LabVIEW (National Instruments, 1986) :
Nodes represent stream processing functions
connected by wires, concurrent execution
triggered by available input. Strong support of
interfaces to instrumentation hardware.

Visual languages:

©
 2

01
5

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Language Erlang
PPj-94l

Erlang developed 1986 by Joe Armstrong, et.al at Ericsson

• multi-paradigm: functional and concurrent

• initial application area: telecommunication
requirements: distributed, fault-tolerant, soft-real-time, non-stopping software

• processes communicate via asynchronous message passing

• single-assignment variables, no shared memory between processes

Explanations and examples taken from

[J. Armstrong, R. Virding, C. Wikström, M. Williams: Concurrent Programming in ERLANG, Second
Edition, Ericsson Telecommunications Systems Laboratories, Prentice Hall,1996]

http://www.erlang.org

©
 2

01
5

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Basic communication constructs
PPj-94m

Initial example

A module that creates counter
processes:

-module(counter).
-export([start/0,loop/1]).

start() ->
spawn(counter, loop, [0]).

loop(Val) ->
receive

increment ->
loop(Val + 1)

end.

clients send increment messages to it

process creation:

Pid = spawn(Module, FunctionName, ArgumentList)

asynchonous message send:

Pid ! Message

The operands are expressions which
yield a process id and a message.

selective receive:

receive
Pattern1 [when Guard1] ->

Actions1 ;
Pattern2 [when Guard2] ->

Actions2 ;
...

end

Searches the process’ mailbox for a message
that matches a pattern , and receives it.
Can not block on an unexpected message!

©
 2

01
3

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns
Complete example: Counter

PPj-94n

-module(counter).
-export([start/0,loop/1,increment/1,value/1,stop/1]).

%% First the interface functions.
start() -> spawn(counter, loop, [0]).

increment(Counter) -> Counter ! increment .

value(Counter) ->
Counter ! { self() ,value} ,
receive {Counter,Value} -> Value

end.

stop(Counter) -> Counter ! stop .

%% The counter loop.
loop(Val) ->

receive increment -> loop (Val + 1);
{From,value} -> From ! {self(),Val},

loop (Val);
stop -> true;
Other -> loop (Val)

end.

Interface
functions are
called by client
processes.

They send 3
kinds of
messages.

self() gives
the client’s pid,
to reply to it.

The counter
process
identifies itself
in the reply.

The receive is
iterated (tail-
recursion).

Unexpected
messages are
removed

©
 2

01
3

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Example: Allocation server (interface)
PPj-94o

-module(allocator).
-export([start/1,server/2,allocate/0,free/1]).

start(Resources) ->
Pid = spawn(allocator, server,

[Resources,[]]),
register (resource_alloc, Pid).

% The interface functions.

allocate() -> request(alloc).

free(Resource) -> request({free,Resource}).

request(Request) ->
resource_alloc ! {self(),Request} ,
receive {resource_alloc,Reply} -> Reply

end.

The two lists of free and
allocated resources are
initialized.

register associates the
pid to a name.

The calls of allocate
and free are transformed
into different kinds of
messages. Thus,
implementation details
are not disclosed to
clients.

A server maintains two lists of free and allocated resources. Clients call a function
allocate to request a resource and a function free to return that resource.

©
 2

01
3

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Example: Allocation server (implementation)
PPj-94p

server(Free, Allocated) ->
receive

{From,alloc} ->
s_allocate(Free, Allocated , From);

{From,{free,R}} ->
s_free(Free, Allocated , From, R)

end.

s_allocate([R|Free], Allocated , From) ->
From ! {resource_alloc,{ yes ,R}},
server(Free, [{R,From}|Allocated]);

s_allocate([], Allocated , From) ->
From ! {resource_alloc, no},
server([], Allocated).

s_free(Free, Allocated, From, R) ->
case member({R,From}, Allocated) of

true -> From ! {resource_alloc,ok},
server([R|Free],

delete({R,From},
Allocated));

false ->From ! {resource_alloc,error},
server(Free, Allocated)

end.

The function server
receives the two kinds of
messages and transforms
them into calls of
s_allocate and
s_free .

s_allocate returns yes
and the resource or no,
and updates the two lists
in the recursive server
call.

s_free : member checks
whether the returned
resource R is in the free
list, returns ok and
updates the lists,

or it returns error .

The server call loops.

©
 2

01
3

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Scala: object-oriented and functional language
PPJ-94q

Scala : Object-oriented language (like Java, more compact notation), augmented by
functional constructs (as in SML); object-oriented execution model (Java)

functional constructs:

• nested functions, higher order functions, currying,
case constructs based on pattern matching

• functions on lists, streams,... provided in a big language library

• parametric polymorphism; restricted local type inference

object-oriented constructs:

• classes define all types (types are consequently oo - including basic types), subtyping,
restrictable type parameters, case classes

• object-oriented mixins (traits)

general:

• static typing, parametric polymorphism and subtyping polymorphism

• very compact functional notation

• complex language, and quite complex language description

• compilable and executable together with Java classes

• since 2003, author: Martin Odersky, www.scala.org, docs.scala-lang.org

©
 2

01
5

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns
Actors in Scala (1)

PPj-94r

An actor is a lightweight process:

• actor { body } creates a
process that executes body

• asynchronous message passing

• send : p ! msg puts msg into p’s
mailbox

• receive operation searches the
mailbox for the first message that
matches one of the case patterns
(as in Erlang)

• case x is a catch-all pattern

[P. Haller, M. Odersky: Actors That Unify
Threads and Events; in A.L. Murphy and J.
Vitek (Eds.): COORDINATION 2007, LNCS
4467, pp. 171–190, 2007. © Springer-
Verlag Berlin Heidelberg 2007]

Example: orders and cancellations

val orderMngr = actor {
while (true)

receive {
case Order(sender, item) =>

val o =
handleOrder(sender,item)

sender ! Ack(o)
case Cancel(sender, o) =>

if (o.pending) {
cancelOrder(o)
sender ! Ack(o)

} else sender ! NoAck
case x => junk += x

}
}

val customer = actor {
orderMngr ! Order(self, myItem)
receive {

case Ack(o) => ...
}

}

©
 2

01
5

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Actors in Scala (2)
PPj-94s

Constructs used to simplify replying:

• The sender of a received message
is stored in sender

• reply(msg) sends msg to
sender

• a !? msg sends msg to a, waits
for a reply, and returns it.

[P. Haller, M. Odersky: Actors That Unify
Threads and Events; in A.L. Murphy and J.
Vitek (Eds.): COORDINATION 2007, LNCS
4467, pp. 171–190, 2007. © Springer-
Verlag Berlin Heidelberg 2007]

Example: orders and cancellations

val orderMngr = actor {
while (true)

receive {
case Order(item) =>

val o =
handleOrder(sender ,item)

reply(Ack(o))
case Cancel(o) =>

if (o.pending) {
cancelOrder(o)
reply(Ack(o))

} else reply(NoAck)
case x => junk += x

}
}

val customer = actor {
orderMngr !? Order(myItem)

match {
case Ack(o) => ...

}
}

©
 2

01
3

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

11. Check your knowledge (1)

Introduction

1. Explain the notions: sequential, parallel, interleaved, concurrent execution of processes.

2. How are Threads created in Java (3 steps)?

Properties of Parallel Programs

3. Explain axioms and inference rules in Hoare Logic.

4. What does the weakest precondition wp (s, Q) = P mean?

5. Explain the notions: atomic action, at-most-once property.

6. How is interference between processes defined?

7. How is non-interference between processes proven?

8. Explain techniques to avoid interference between processes.

Monitors

9. Explain how the two kinds of synchronization are used in monitors.

10.Explain the semantics of condition variables and the variants thereof.

11.Which are the 3 reasons why a process may wait for a monitor?

12.How do you implement several conditions with a single condition variable?

PPJ-95

©
 2

01
3

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Check your knowledge (2)

13.Signal-and-continue requires loops to check waiting-conditions. Why?

14.Explain the properties of monitors in Java.

15.When can notify be used instead of notifyAll?

16.Where does a monitor invariant hold? Where has it to be proven?

17.Explain how monitors are systematically developed in 5 steps.

18.Formulate a monitor invariant for the readers/writers scheme?

19.Explain the development steps for the method „Rendezvous of processes“.

20.How are waiting conditions and release operations inserted when using the method of
counting variables?

Barriers

21.Explain duplication of distance at the example prefix sums.

22.Explain the barrier rule; explain the flag rules.

23.Describe the tree barrier.

24.Describe the symmetric dissemination barrier.

PPJ-95a

©
 2

01
3

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns
Check your knowledge (3)

Data parallelism

25.Explain how list ends are found in parallel.

26.Show iteration spaces for given loops and vice versa.

27.Explain which dependence vectors may occur in sequential (parallel) loops.

28.Explain the SRP transformations.

29.How are the transformation matrices used?

30.Which transformations can be used to parallelize the inner loop if the dependence vectors
are (0,1) and (1,0)?

31.How are bounds of nested loops described formally?

Asynchronous messages

32.Explain the notion of a channel and its operations.

33.Explain typical channel structures.

34.Explain channel structures for the client/server paradigm.

35.What problem occurs if server processes receive each from several channels?

36.Explain the notion of conversation sequences.

PPJ-96

©
 2

01
3

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Check your knowledge (4)

37.Which operations does a node execute when it is part of a broadcast in a net?

38.Which operations does a node execute when it is part of a probe-and-echo?

39.How many messages are sent in a probe-and-echo scheme?

Messages in distributed systems

40.Explain the worker paradigm.

41.Describe the process interface for distributed branch-and-bound.

42.Explain the technique for termination in a ring.

Synchronous messages

43.Compare the fundamental notions of synchronous and asynchronous messages.

44.Explain the constructs for selective wait with synchronous messages.

45.Why are programs based on synchronous messages more compact and less redundant than
those with asynchronous messages?

46.Describe a server for resource allocation according to the scheme for synchronous
messages.

PPJ-97
©

 2
01

3
be

i P
ro

f.
D

r.
 U

w
e

K
as

te
ns

Check your knowledge (5)

Concurrent and functional programming

47.Explain why paradigms in functional and concurrent programming match well.

48.What are benefits of stream programming?

49.Compare implementations of the Sieve of Eratosthenes using streams or CSP.

50.Explain concurrency in Erlang, in particular selective receive.

51.Explain the characteristics of Scala, in particular its Actors.

PPJ-98

