PPJ-38

5. Data Parallelism: Barriers

Many processes execute the **same operations at the same time on different data**; usually on elements of **regular data structures**: arrays, sequences, matrices, lists.

Data parallelism as an architectural model of parallel computers:

vector machines, e. g. Cray

SIMD machines (Single Instruction Multiple Data), e. g. Connection Machine, MasPar GPUs (Graphical Processing Units); massively parallel processors on graphic cards

Data parallelism as a programming model for parallel computers:

- computations on arrays in nested loops
- analyze data dependences of computations, transform and parallelize loops
- iterative computations in rounds, synchronize with Barriers
- systolic computations: 2 phases are iterated: compute shift data to neighbour processes

Applications mainly in technical, scientific computing, e. g.

- fluid mechanics
- image processing
- solving differential equations
- finite element method in design systems

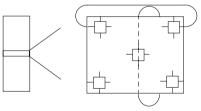
PPJ-39

Data parallelism as an architectural model

program

SIMD machine: Single Instruction Multiple Data

- very many processors, **massively parallel** e. g. 32 x 64 processor field
- local memory for each processor
- same instructions in lock step
- fast communication in lock step
- fixed topology, usually a grid
- machine types e. g. Connection Machine, MasPar



field of processors

Lecture Parallel Programming WS 2014/2015 / Slide 38

Objectives:

Overview over notions of data parallelism

In the lecture:

Explain the notions

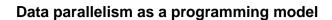
Lecture Parallel Programming WS 2014/2015 / Slide 39

Objectives:

Architecture of a SIMD computer

In the lecture:

Explanation of the properties



- regular data structures (arrays, lists) are mapped onto a field of processors
- processes execute the same program on individual data in lock step
- communication with neighbours in the same direction in lock step simple example matrix addition:

sequential: C = A + B

for (i = 0; i < N; i++)
 for (j = 0; j < M; j++)
 c[i,j] = a [i,j] + b[i,j];</pre>

distribute A, B
c = a + b
collect C

1 step!

PPJ-40

- these can be parallelized directly, since there are no data dependences
- data mapping is trivial: array element [i,j] on process [i,j]
- communication is not needed
- no algorithmic idea is needed

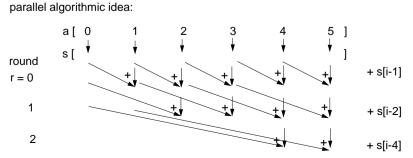
PPJ-41

Example prefix sums

input: sequence a of numbers; output: sequence s of sums of the prefixes of a $s[i] = \sum_{j=0}^{l} a[j]$

values: 5 3 1 2 1 3 values: 5 3 1 2 1 3 3 4 5]

results: 5 8 9 11 12 15



Lecture Parallel Programming WS 2014/2015 / Slide 40

Objectives:

idea of loop parallelization

In the lecture:

- · explain the example,
- show the reasons for the simplicity of the parallelization

Questions

• Give examples for array operations that can be parallelized with similar ease.

Lecture Parallel Programming WS 2014/2015 / Slide 41

Objectives:

Understand the parallel computation of prefix sums

In the lecture:

Explain

- · the task,
- · the algorithmic idea,
- · how to exploit associativity,
- · computations in rounds,
- · duplication of distance

Questions:

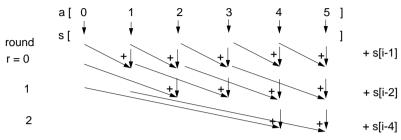
• What is the formula for the number of steps in the sequential and in the parallel case?

input:sequence a of numbers; output:sequence s of sums of the prefixes of a

$$s[i] = \sum_{j=0}^{r} a[j]$$

PPJ-41a

parallel algorithmic idea:



Proof for process p = 0 ... n - 1

Invariant SUM: s[p] = a[p-d+1] + ... + a[p] with d = 1, 2, ..., m <= n distance before next round

Induction begin: d = 1; s[p] = a[p] holds by initialization

induction step: computation s[p] = s[p - d] + s[p]

$$a[p-2d+1] + ... + a[p-d] + a[p-d+1] + ... + a[p]$$

substitution of 2d by d implies SUM

PPJ-42

Prefix sums: applied methods

- computational scheme reduction:
 all array elements are comprised using a reduction operation (here: addition)
- iterative computation in rounds:
 in each round all processes perform a computation step
- duplication of distance: data is exchanged in each round with a neighbour at twice the distance as in the previous round
- barrier synchronization: processes may not enter the next round, before all processes have finished the previous one

Lecture Parallel Programming WS 2014/2015 / Slide 41a

Objectives:

Proof the parallel computation of prefix sums

In the lecture:

Explain

· the proof

Lecture Parallel Programming WS 2014/2015 / Slide 42

Objectives:

Point out the methods

In the lecture:

- · Explain the methods for the prefix sums.
- · Point out other applications of these methods.

114 bei Prof. Dr. Uwe Kastens

PPJ-43

PPJ-44

Barriers

Several processes meet at a common point of synchronization

Rule: All processes must have reached the barrier (for the j-th time), before one of them leaves it (for the j-th time).

Applications:

- iterative computations, where iteration j uses results of iteration j-1
- · separation of computational phases

Scheme:

```
public void run ()
{  do {    computeNewValues (i);
        b.barrier();
    }
  while (!converged);
}
```

Implementation techniques for barriers:

- central controller: monitor or coordination process
- worker processes coordinated as a tree
- worker processes symmetrically coordinated (butterfly barrier, dissemination barrier)

Barrier implemented by a monitor

Monitor stops a given number of processes and releases them together:

```
class BarrierMonitor
                                    // number of processes to be synchronized
{ private int processes
                 arrived = 0; // number of processes arrived at the barrier
   public BarrierMonitor (int procs)
   { processes = procs; }
   synchronized public barrier ()
   { arrived++;
      if (arrived < processes)</pre>
         try { wait(); } catch (InterruptedException e) {}
                                       // exception destroys barrier behaviour
     else
        arrived = 0;
                                                      // reset arrival count
                                              // release the other processes
        notifyAll();
} } }
```

Lecture Parallel Programming WS 2014/2015 / Slide 43

Objectives:

Understand the concept of barriers

In the lecture:

Explain

- the barrier rule.
- the relation to the prefix sums,
- · applications.

Lecture Parallel Programming WS 2014/2015 / Slide 44

Objectives:

Understand the monitor implementation

In the lecture:

Explain

- the implementation,
- · why waiting in a loop is not necessary.

Questions:

· Why does this central solution cause a bottleneck?

© 20

Distributed tree barrier

Barrier synchronization of the worker processes organized as a **binary tree**. Bottleneck of central synchronization is avoided.

2 synchronization variables (flags) at each node:

arrived: all processes in a subtree

have arrived,

is propagated upward

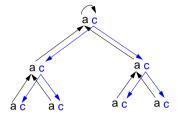
continue: all processes in a subtree

may continue,

is propagated downward

disadvantage:

different code is needed for root, inner nodes, and for leafs



2 Rules for Synchronization Using Flags

Flag for synchronization between exactly 2 processes

One process waits until the flag is set.

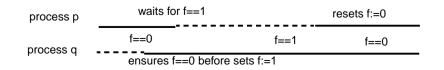
The other process sets the flag.

May be implemented by a monitor in Java.

Flag rules: 1. The process that waits for a flag resets it.

2. A flag that is set may not be set again before being reset.

Consequence: no state change will be lost.



Lecture Parallel Programming WS 2014/2015 / Slide 45

Objectives:

PPJ-45

PPJ-45a

Understand the tree barrier

In the lecture:

Explain

- · the principle of 2 phases,
- the advantage of the distributed solution,

Lecture Parallel Programming WS 2014/2015 / Slide 45a

Objectives:

Understand flag synchronization

In the lecture:

Explain

· the general flag rules.

Assignments

· Design a Java class for flag synchronization between 2 processes. Ensure that the flag rules are obeyed.

© 2012 bei Prof. Dr.

Distributed tree barrier implementation

2 synchronization variables (flags) at each node:

arrived: all processes in a subtree have arrived

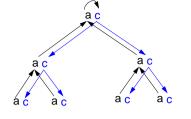
propagated upward

continue: all processes in a subtree may continue

propagated downward

initially all flags are reset

code for an inner node:



PPJ-45b

PPJ-46

	leaf	root
<pre>execute this.task();</pre>	x	x
<pre>wait for left.arrived; reset left.arrived;</pre>		x
<pre>wait for right.arrived; reset right.arrived;</pre>		x
set this.arrived;	x	
<pre>wait for this.continue; reset this.continue;</pre>	x	
set left.continue;		x
set right.continue;		x

Symmetric, distributed barrier (dissemination)

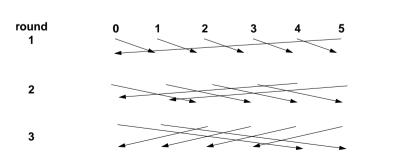
 $(i + N - 2^{s-1})$ modulo N

Processes synchronize pairwise in rounds with doubled distances.

N processes are synchronized after r rounds if $N \le 2^r$

In round s

process i indicates its arrival and then waits for the arrival of process (i + N - 2^{s-1}) modulo N:



After r rounds each process is synchronized with each other. Proof idea: For each process i each other process occurs in a tree of processes which have synchronized (in)directly with i.

Lecture Parallel Programming WS 2014/2015 / Slide 45b

Objectives:

Understand the tree barrier

In the lecture:

Explain

· the different code for the 3 kinds of nodes.

Assignments

• Write the code for the 3 kinds of nodes using objects of the flag class.

Lecture Parallel Programming WS 2014/2015 / Slide 46

Objectives:

Understand the dissemination barrier

In the lecture:

- · Symmetric code for arbitrary many processes.
- Arc i to j in the diagram means j waits for arrival of i.
- · show the synchronization for pairs.
- No cyclic waiting, because the arrival is indicated first, then the partner is waited for.
- After the last round all processes are synchronized, because for all processes p a binary tree exists s.t. p is its root, all
 processes are in that tree, the arcs are waiting pairs from the diagram forming pathes from the leaves to the root..

Questions:

- · Write the synchronization code.
- · Show one of the binary trees.

```
Symmetric, distributed barrier: implementation

In round s
process i indicates its arrival and
waits for the arrival of process (i + N - 2<sup>s-1</sup>) modulo N

Code for each process:

Execute this.task();

// synchronize:
s = 0;
while (N > 2<sup>s</sup>)
s++;
wait for f==0; set f=1;
partner=p[(i + N - 2<sup>s-1</sup>) modulo N];
wait partner.f; reset partner.f=0
```

```
{ private int procNo;
                                             // number of process
  private BarrierMonitor bm;
                                                 // barrier object
  public PrefixSum (int p, BarrierMonitor b)
  { procno = p; bm = b; }
  public void run ()
  { int addIt, dist = 1;
                                                       // distance
                                         // global arrays a and s
     s[procNo] = a[procNo];
                                       // initialize result array
     bm.barrier();
     // invariant SUM: s[procNo] == a[procNo-dist+1]+...+a[procNo]
     while (dist < N)
     { if (procNo - dist >= 0)
          addIt = s[procNo - dist]; // value before overwritten
       bm.barrier();
        if (procNo - dist >= 0)
```

Prefix sums with barriers

class PrefixSum extends Thread

s[procNo] += addIt;

bm.barrier();
dist = dist * 2;

} } }

Lecture Parallel Programming WS 2014/2015 / Slide 46a

Objectives:

Understand the dissemination barrier

In the lecture:

- · Processes have to wait before they set AND before they reset the flag.
- · Symmetric code for arbitrary many processes.

Questions

- Write the synchronization code.
- Show one of the binary trees.

Lecture Parallel Programming WS 2014/2015 / Slide 47

Objectives:

PPJ-47

// doubled distance

Examples for synchonization points

In the lecture:

Explain

- · the invariant,
- the access of s[procNo],
- the reasons for the 3 synchronization points.

Questions:

• Explain the reasons for the 3 synchronization points.

PP.I-4

PPJ-49

Prefix sums in a synchronous parallel programming model

Notation in Modula-2* with synchronous (and asynchronous) loops for parallel machines

```
VAR a, s, t: ARRAY [0..N-1] OF INTEGER;
VAR dist: CARDINAL;
BEGIN
   FORALL i: [0..N-1] IN SYNC
                                                     parallel loop in lock step
     s[i] := a[i];
   END;
   dist := 1;
                                                     parallel loop in lock step
   WHILE dist < N
     FORALL i: [0..N-1] IN SYNC
        IF (i-dist) >= 0 THEN
           t[i] := s[i - dist];
                                                             implicit barrier
                                                         for each statement
           s[i] := s[i] + t[i];
        END
      END:
     dist := dist * 2;
```

Finding list ends: data parallel approach

input: int array link stores lists; link[i] contains the index of the successor or nil output: int array last; last[i] contains the index of the last element of list link[i]

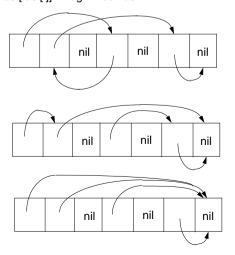
method: worker process i computes last[i] = last[last[i]] in log N rounds

```
int d = 1;
last[i] = link[i];
barrier

while (d < N)
{   int newlast = nil;
   if ( last[i] != nil &&
        last[last[i]] != nil)
        newlast = last[last[i]];
barrier
   if (newlast != nil)
        last[i] = newlast;
barrier
   d = 2*d;
}</pre>
```

END END

last[i] points to the end of those lists which are not longer than d



Lecture Parallel Programming WS 2014/2015 / Slide 48

Objectives:

Implicit barriers

In the lecture:

- · Explain the language constructs.
- If expressions were evaluated in lock step, too, the array t could be omitted.
- The MasPar SIMD machine would be programmed similarly.

Questions:

• Explain the execution if values were not saved in t[i].

Lecture Parallel Programming WS 2014/2015 / Slide 49

Objectives:

Data parallelism not only for arrays!

In the lecture:

Explain

- · parallel scanning of lists,
- · doubling distances for lists,
- last[last[i]].
- · that it is only useful if the ends of many long lists are searched.

Questions

Which role plays the distance d here?

C-5.12 / PPJ-51

5.2 / 6. Data Parallelism: Loop Parallelization

Regular loops on orthogonal data structures - parallelized for data parallel processors

Development steps (automated by compilers):

• nested loops operating on arrays, sequential execution of iteration space DECLARE B[0..N,0..N+1] FOR I := 1 ..N FOR J := 1 .. I B[I,J] := B[I-1,J]+B[I-1,J-1]

• analyze data dependences data-flow: definition and use of array elements

 transform loops keep data dependences forward in time

• parallelize inner loop(s) map to field or vector of processors

 map arrays to processors such that many accesses are local, transform index spaces

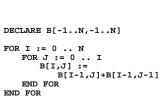
Iteration space of loop nests

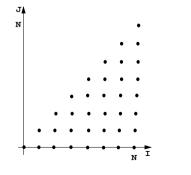
Iteration space of a loop nest of depth n:

- n-dimensional space of integral points (polytope)
- each point (i₁, ..., i_n) represents an execution of the innermost loop body
- loop bounds are in general not known before run-time
- iteration need not have orthogonal borders
- · iteration is elaborated sequentially

example: computation of Pascal's triangle

END FOR END FOR





Lecture Parallel Programming WS 2014/2015 / Slide 50

Objectives:

Overview

In the lecture:

Explain

- · Application area: scientific computations
- · goals: execute inner loops in parallel with efficient data access
- · transformation steps

Lecture Parallel Programming WS 2014/2015 / Slide 51

Objectives:

Understand the notion of iteration space

In the lecture:

- · Explain the iteration space of the example.
- · Show the order of elaboration of the iteration space.
- If the step size is greater than 1 the iteration space has gaps the polytope is not convex.

Questions:

• Draw an iteration space that has step size 3 in one dimension.

Examples for Iteration spaces of loop nests

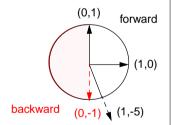
FOR I := 0 .. N
FOR J := 0 .. I
FOR J := 0 .. I
FOR J := 0 .. M
F

Data Dependences in Iteration Spaces

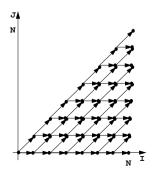
Data dependence from iteration point i1 to i2:

- Iteration i1 computes a value that is used in iteration i2 (flow dependence)
- relative dependence vector
 d = i2 i1 = (i2₁ i1₁, ..., i2_n i1_n)
 holds for all iteration points except at the border
- Flow-dependences can not be directed against the execution order, can not point backward in time: each dependence vector must be lexicographically positive, i. e. d = (0, ..., 0, d_i, ...), d_i > 0

Example: Computation of Pascal's triangle



C-5.13 / PPJ-52



Lecture Parallel Programming WS 2014/2015 / Slide 51a

Objectives:

Relate loop nests to iteration spaces

In the lecture:

· Explain the iteration spaces of the examples

Lecture Parallel Programming WS 2014/2015 / Slide 52

Objectives:

Understand dependences in loops

In the lecture:

Explain:

- · Vector representation of dependences,
- · examples,
- admissable directions graphically

Questions:

• Show different dependence vectors and array accesses in a loop body which cause dependences of given vectors.

Loop Transformation

The **iteration space** of a loop nest is transformed to **new coordinates**. Goals:

- execute innermost loop(s) in parallel
- improve locality of data accesses;
 in space: use storage of executing processor,
 in time: reuse values stored in cache
- systolic computation and communication scheme

Data dependences must **point forward in time**, i.e. **lexicographically positive** and **not within parallel dimensions**

linear basic transformations:

 Skewing: add iteration count of an outer loop to that of an inner one

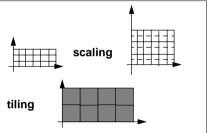
C-5.14 / PPJ-53

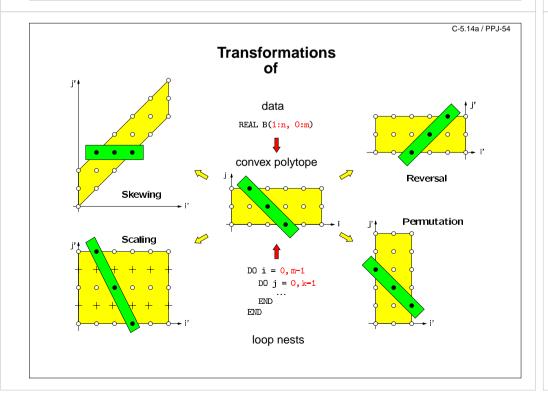
- Reversal: flip execution order for one dimension
- Permutation: exchange two loops of the loop nest

SRP transformations (next slides)

non-linear transformations, e. g.

- Scaling: stretch the iteration space in one dimension, causes gaps
- Tiling: introduce additional inner loops that cover tiles of fixed size





Lecture Parallel Programming WS 2014/2015 / Slide 53

Objectives:

Overview

In the lecture:

- · Explain the goals.
- · Show admissable directions of dependences.
- · Show diagrams for the transformations.

Lecture Parallel Programming WS 2014/2015 / Slide 54

Objectives:

Visualize the transformations

In the lecture:

- · Give concrete loops for the diagrams.
- · Show how the dependence vectors are transformed.
- Skewing and scaling do not change the order of execution; hence, they are always applicable.

Questions:

• Give dependence vectors for each transformation, which are still valid after the transformation.

C-5.15 / PPJ-55a

Transformations defined by matrices

Transformation matrices: systematic transformation, check dependence vectors

Reversal
$$\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} * \begin{pmatrix} i \\ j \end{pmatrix} = \begin{pmatrix} i \\ -j \end{pmatrix} = \begin{pmatrix} i' \\ j' \end{pmatrix}$$

Skewing
$$\begin{pmatrix} 1 & 0 \\ f & 1 \end{pmatrix} * \begin{pmatrix} i \\ j \end{pmatrix} = \begin{pmatrix} i \\ f*i+j \end{pmatrix} = \begin{pmatrix} i' \\ j' \end{pmatrix}$$

Permutation
$$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} * \begin{pmatrix} i \\ j \end{pmatrix} = \begin{pmatrix} j \\ i \end{pmatrix} = \begin{pmatrix} i' \\ j' \end{pmatrix}$$

Lecture Parallel Programming WS 2014/2015 / Slide 55

Objectives:

Understand the matrix representation

In the lecture:

- Explain the principle.
- Map concrete iteration points.
- · Map dependence vectors.
- · Show combinations of transformations.

Questions:

· Give more examples for skewing transformations.

Reversal

Iteration count of one loop is negated, that dimension is enumerated backward

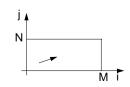
general transformation matrix

2-dimensional:

loop variables old nev

$$\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} * \begin{pmatrix} i \\ j \end{pmatrix} = \begin{pmatrix} i \\ -j \end{pmatrix} = \begin{pmatrix} ir \\ jr \end{pmatrix}$$

for ir = 0 to M
for jr = -N to 0



original transformed

Lecture Parallel Programming WS 2014/2015 / Slide 55a

Objectives:

Understand reversal transformation

In the lecture:

- · Explain the effect of reversal transformation.
- · Explain the notation of the transformation matrix.
- There may be no dependences in the direction of the reversed loop they would point backward after the transformation.

Questions:

· Show an example where reversal enables loop fusion.

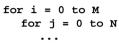
Skewing

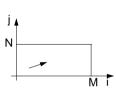
The iteration count of an outer loop is added to the count of an inner loop; iteration space is shifted; execution order of iteration points remains unchanged

original

original

general transformation matrix:



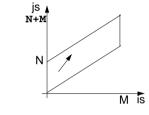


2-dimensional:

loop variables old new

$$\begin{pmatrix} 1 & 0 \\ f & 1 \end{pmatrix} * \begin{pmatrix} i \\ j \end{pmatrix} = \begin{pmatrix} i \\ f*i+j \end{pmatrix} = \begin{pmatrix} is \\ js \end{pmatrix}$$

transformed

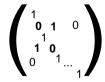


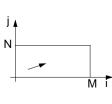
C-5.17 / PPJ-55c

Permutation

Two loops of the loop nest are interchanged; the iteration space is flipped; the execution order of iteration points changes; new dependence vectors must be legal.

general transformation matrix:

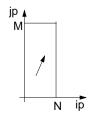




2-dimensional:

loop variables old nev

$$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} * \begin{pmatrix} i \\ j \end{pmatrix} = \begin{pmatrix} j \\ i \end{pmatrix} = \begin{pmatrix} ip \\ jp \end{pmatrix}$$



Lecture Parallel Programming WS 2014/2015 / Slide 55b

Objectives:

Understand skewing transformation

In the lecture:

- Explain the effect of a skewing transformation.
- Skewing is always applicable.
- Skewing can enable loop permutation

Questions:

• Show an example where skewing enables loop permutation.

Lecture Parallel Programming WS 2014/2015 / Slide 55c

Objectives:

Understand loop permutation

In the lecture:

- Explain the effect of loop permutation.
- Show effect on dependence vectors.
- · Permutation often yields a parallelizable innermost loop.

Questions:

• Show an example where permutation yields a parallelizable innermost loop.

Use of Transformation Matrices

- Transformation matrix T defines new iteration counts in terms of the old ones: T * i = i'

$$\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} * \begin{pmatrix} i \\ j \end{pmatrix} = \begin{pmatrix} i \\ -j \end{pmatrix} = \begin{pmatrix} i' \\ j' \end{pmatrix}$$

• Transformation matrix T transforms old dependence vectors into new ones: T * d = d'

e. g.
$$\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} * \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

• inverse Transformation matrix **T**⁻¹ defines **old iteration counts** in terms of new ones, for transformation of index expressions in the loop body: $T^{-1} * i' = i$

e. g.
$$\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} * \begin{pmatrix} i' \\ j' \end{pmatrix} = \begin{pmatrix} i' \\ -j' \end{pmatrix} = \begin{pmatrix} i \\ j \end{pmatrix}$$

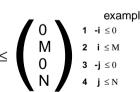
- concatenation of transformations first T₁ then T₂: T₂* T₁ = T
 - $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} * \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$

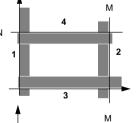
C-5.19 / PPJ-56a

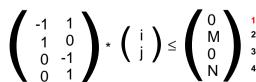
Inequalities Describe Loop Bounds

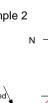
The bounds of a loop nest are described by a set of linear inequalities. Each inequality separates the space in "inside and outside of the iteration space":

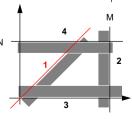
$$\begin{pmatrix}
-1 & 0 \\
1 & 0 \\
0 & -1 \\
0 & 1
\end{pmatrix}
*
\begin{pmatrix}
i \\
j
\end{pmatrix}
\le
\begin{pmatrix}
0 \\
M \\
0 \\
N
\end{pmatrix}$$











positive factors represent **upper** bounds negative factors represent lower bounds **1, 4:** $j \le min(i, N)$ **1+3**: 0 ≤ i **3**: $0 \le i$

2: i ≤ M

Lecture Parallel Programming WS 2014/2015 / Slide 56

Objectives:

Learn to Use the matrices

In the lecture:

- Explain the 4 uses with examples.
- · Transform a loop completely.

• Why do the dependence vectors change under a transformation, although the dependence between array elements remains unchanged?

Lecture Parallel Programming WS 2014/2015 / Slide 56a

Objectives:

Understand representation of bounds

In the lecture:

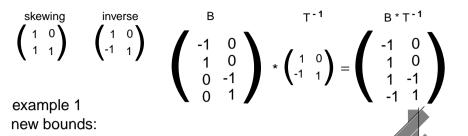
- · Explain matrix notation.
- Explain graphic interpretation.
- · There can be arbitrary many inequalities.

Questions:

• Give the representations of other iteration spaces.

Transformation of Loop Bounds

The inverse of a transformation matrix T^{-1} transforms a set of inequalities: $B * T^{-1} i' \le c$



B * T-1

Example for Transformation and Parallelization of a Loop

Parallelize the above loop.

- 1. Draw the iteration space.
- 2. Compute the dependence vectors and draw examples of them into the iteration space. Why can the inner loop not be executed in parallel?
- 3. Apply a skewing transformation and draw the iteration space.
- 4. Apply a permutation transformation and draw the iteration space. Explain why the inner loop now can be executed in parallel.
- 5. Compute the matrix of the composed transformation and use it to transform the dependence vectors.
- 6. Compute the inverse of the transformation matrix and use it to transform the index expressions.
- 7. Specify the loop bounds by inequalities and transform them by the inverse of the transformation matrix.
- 8. Write the complete loops with new loop variables ip and jp and new loop bounds.

Lecture Parallel Programming WS 2014/2015 / Slide 56b

Objectives:

Understand the transformation of bounds

In the lecture:

· Explain how the inequalities are transformed

• Compute further transformations of bounds.

Lecture Parallel Programming WS 2014/2015 / Slide 56c

Objectives:

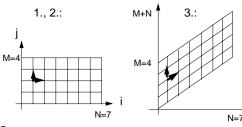
Exercise the method for an example

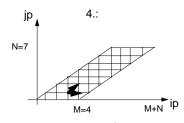
In the lecture:

- · Explain the steps of the transformation.
- Solution on C-5.22

• Are there other transformations that lead to a parallel inner loop?

Solution of the Transformation and Parallelization Example





$$\begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

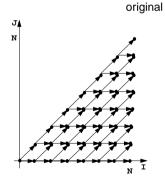
$$\begin{pmatrix}
0 & 1 \\
1 & -1
\end{pmatrix}$$

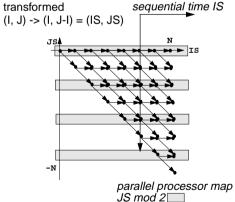
$$p \le N$$
 2, 4 => $ip \le M+N$
 $p+jp \le 0$ 1, 4 => $max (0, ip-M) \le jp$
 $p-in < M$ 2. 3 => $ip \le min (ip. N)$

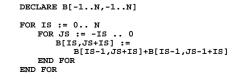
1, 3 => 0 ≤ ip

C-5.23 / PPJ-57

Transformation and Parallelization







Lecture Parallel Programming WS 2014/2015 / Slide 56d

Objectives:

Solution for C-60

In the lecture:

Explain

- · the bounds of the iteration spaces,
- the dependence vectors,
- · the transformation matrix and its inverse,
- the conditions for being parallelizable,
- the transformation of the index expressions
- the transformation of the loop bounds.

Questions:

· Describe the transformation steps.

Lecture Parallel Programming WS 2014/2015 / Slide 57

Objectives:

Example for parallelization

In the lecture:

- Explain skewing transformation: f = -1
- · Inner loop in parallel.
- Explain the time and processor mapping.
- mod 2 folds the arbitrary large loop dimension on a fixed number of 2 processors.

Questions:

- · Give the matrix of this transformation.
- · Use it to compute the dependence vectors, the index expressions, and the loop bounds.

Data Mapping

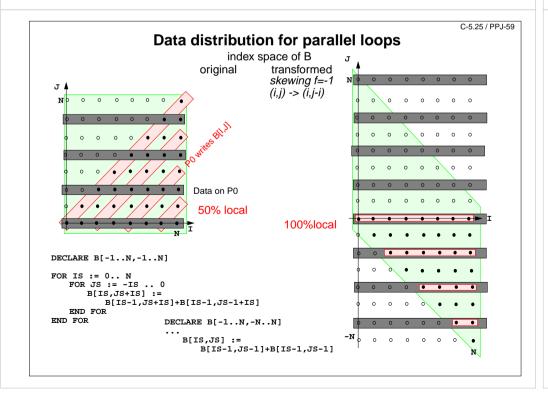
Goal:

Distribute array elements over processors, such that as many **accesses as possible are local.**

Index space of an array:

n-dimensional space of integral index points (polytope)

- · same properties as iteration space
- · same mathematical model
- same **transformations** are applicable (Skewing, Reversal, Permutation, ...)
- no restrictions by data dependences



Lecture Parallel Programming WS 2014/2015 / Slide 58

Objectives:

C-5.24 / PPJ-58

Reuse model of iteration spaces

In the lecture:

Explain, using examples of index spaces

Questions

• Draw an index space for each of the 3 transformations.

Lecture Parallel Programming WS 2014/2015 / Slide 59

Objectives:

The gain of an index transformation

In the lecture:

Explain

- · local and non-local accesses,
- · the index transformation,
- · the gain of locality,
- · unused memory because of skewing.

Questions:

• How do you compute the index transformation using a transformation matrix?