
A Wrapper Generator

U. Kastens

April 22, 2010

1 Introduction

This text contains a specification for a Wrapper Generator to be created using the Eli
system. The Wrapper Generator can be used to generate wrapper classes for given types.

The input for the generator is a sequence of type names. A C++ module is generated
containing a wrapper class for each type name. Each object of such a class wraps a value
of the type the class is created for. A common base class, named Object, is created for all
those wrapper classes.

This specification is written in form of a FunnelWeb file. The documentation of Fun-
nelWeb can be found under Eli/Tools/FunnelWeb. FunnelWeb can create both from this
file, a specification used by Eli to create the Wrapper Generator and a documentation that
can be processed by LaTex. This technique is called +Literate Programming+.

This file contains specification fragments, written as FunnelWeb macros, and plain
text explaining them. The documentation can be created using LaTex. For that pupose
the input for LaTex is derived by the Eli command: Wrapper.fw:fwTex; the command
Wrapper.fw:fwTex:pdf is used to create a pdf file for it.

The generator specification is extracted automatically by Eli from this file when Eli
is asked to derive a product from it, e.g. the executable processor using the command
Wrapper.fw:exe.

The following fragment is an example for an input to the Wrapper Generator. It is a
FunnelWeb macro which creates a file named example (see FunnelWeb/Output Files).

example[1]:

int;

PairPtr; "Pair.h"

This macro is attached to a product file.

The following fragment creates a file named Wrapper.con; it is a specification of type
con. Specifications of that type are used to describe the concrete syntax of the generator’s
input. In the Eli Tutorial

1

Guide for New Eli Users/Descriptive Mechanisms Known to Eli those types are ex-
plained briefly, and references to documents are given which give detailed descriptions how
such specifications are used.

In this case specifications of concrete syntax are explained in the document Syntactic Analysis.

Wrapper.con[2]:

Specification: Sequence.

Sequence: Sequence Element / .

Element: TypeName ’;’.

Element: FileName.

TypeName: Identifier.

FileName: String.

This macro is attached to a product file.

Wrapper.gla[3]:

Identifier: C IDENTIFIER

String: C STRING LIT

C COMMENT

This macro is attached to a product file.

FileName[4]:

SYMBOL FileName: Include: PTGNode;

SYMBOL FileName COMPUTE

SYNT.Include = PTGInclude (StringTable (TERM));

END;

This macro is invoked in definition 11.

TypeName[5]:

SYMBOL TypeName:

KindDef, ClassFwd, ObjectGet, ClassHead, ClassGet: PTGNode;

SYMBOL TypeName COMPUTE

SYNT.KindDef = PTGKindDef (StringTable (TERM), THIS.KindNumber);

SYNT.ClassFwd = PTGClassFwd (StringTable (TERM));

SYNT.ObjectGet = PTGObjectGet (StringTable (TERM));

SYNT.ClassHead = PTGClassHead (StringTable (TERM));

SYNT.ClassGet = PTGClassGet (StringTable (TERM));

END;

2

This macro is invoked in definition 11.

KindNumbers [6]:

CHAIN KindNumber: int;

SYMBOL Specification COMPUTE

CHAINSTART HEAD.KindNumber = 1;

END;

SYMBOL TypeName COMPUTE

THIS.KindNumber = ADD (THIS.KindNumber, 1);

END;

This macro is invoked in definition 11.

Wrapper [7]:

RULE: Specification LISTOF Element COMPUTE

PTGOutFile

(CatStrStr (SRCFILE, ".h"),

PTGWrapperHdr

(CONSTITUENTS FileName.Include

WITH (PTGNode, PTGSeq, IDENTICAL, PTGNull),

CONSTITUENTS TypeName.KindDef

WITH (PTGNode, PTGSeq, IDENTICAL, PTGNull),

CONSTITUENTS TypeName.ClassFwd

WITH (PTGNode, PTGSeq, IDENTICAL, PTGNull),

CONSTITUENTS TypeName.ObjectGet

WITH (PTGNode, PTGSeq, IDENTICAL, PTGNull),

CONSTITUENTS TypeName.ClassHead

WITH (PTGNode, PTGSeq, IDENTICAL, PTGNull)));

PTGOutFile

(CatStrStr (SRCFILE, ".cc"),

PTGWrapperImpl

(SRCFILE,

CONSTITUENTS TypeName.ClassGet

WITH (PTGNode, PTGSeq, IDENTICAL, PTGNull)));

END;

This macro is invoked in definition 11.

Wrapper.specs[8]:

3

$/Tech/Strings.specs

$/Output/PtgCommon.fw

This macro is attached to a product file.

Wrapper.HEAD.phi[9]:

#include "source.h"

This macro is attached to a product file.

Wrapper.ptg[10]:

Include:

"#include " $ string "\n"

KindDef:

"#define " $ string "Kind \t" $ int "\n"

ClassFwd:

"class " $ string "Wrapper;\n"

ObjectGet:

" " $1 string " get" $1 string "Value ();\n"

ClassHead:

"class " $1 string "Wrapper : public Object {\n"
"private:\n"

" " $1 string " v;\n"

"public:\n"

" " $1 string "Wrapper (" $1 string " value) "

"{ kind = " $1 string "Kind; v = value; }\n"
" " $1 string " getValue () { return v; }\n"
"};\n\n"

ClassGet:

$1 string " Object::get" $1 string "Value () {\n"
" if (kind == " $1 string "Kind)\n"

" return ((" $1 string "Wrapper*)this)->getValue();\n"

" else\n"

" throw WrapperExcept();\n"

"}\n\n"

WrapperHdr:

"#ifndef WRAPPER H\n"

4

"#define WRAPPER H\n\n"

$1 /* Includes */

"\n#define noKind 0\n"

$2 /* KindDefs */

"\n"

$3 /* ClassFwds */

"\n"

"class Object {\n"
"public:\n"

" class WrapperExcept {};\n"
" int getKind () { return kind; }\n"
$4 /* ObjectGets */

"protected:\n"

" int kind;\n"

"};\n\n"
$5 /* ClassHeads */

"\n#endif\n"

WrapperImpl:

"#include \"" $ string ".h\"\n\n"

$ /* ClassGets */

This macro is attached to a product file.

Wrapper.lido[11]:

Wrapper [7]
FileName[4]
TypeName[5]
KindNumbers [6]

This macro is attached to a product file.

5

