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5 Code Parallelization

Processor with instruction level parallelism (ILP)
executes several instructions in parallel.

Classes of processors and parallelism:
VLIW, super scalar
Pipelined processors
Data parallel processors

Compiler analyzes sequential programs  to
exhibit potential parallelism
on instruction level;

model dependences
between computations

Compiler arranges instructions for
shortest execution time:
instruction scheduling

Compiler analyzes loops
to execute them in parallel
loop transformation
array transformation

C-5.1

Parallel functional units, VLIW
super scalarFU1 FU2 FU3

parallelized
instruction
sequence

Data parallel processor, SIMD

FU0 FU31...

do c[i]  := a[i] + b [i];
for i := 0 to 31

is one instruction!

S3 S2 S1

sequential code scheduled for pipelining

Pipeline processor

Lecture Compilation Methods SS 2013 / Slide 501

Objectives:

3 abstractions of processor parallism

In the lecture:

• explain the abstract models

• relate to real processors

• explain the instruction scheduling tasks

Suggested reading:

Kastens / Übersetzerbau, Section 8.5

Questions:

• What has to be known about instruction execution in order to solve the instruction scheduling problem in the compiler?
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5.1 Instruction Scheduling
Data Dependence Graph

Exhibit potential fine-grained parallelism  among operations.
Sequential code is over-specified!

Data dependence graph (DDG)  for a basic block:
Node : operation;
Edge  a -> b: operation b uses the result of operation a

C-5.2

Example for a basic block:
1: t1 := a
 2: t2 := b
 3: t3 := t1 + t2
 4: x := t3
 5: t4 := c
 6: t5 := t3 + t4
 7: y := t5
 8: t6 := d
 9: t7 := e
10: t8 := t6 + t7
11: z := t8

1 2

3

4

5

6

7

8 9

10

11x
y z

t1 t2

t3

t4

t5

t6 t7

t8

t3

data dependence graph

ti are symbolic registers , store intermediate
results, obey single assignment rule
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Objectives:

DDG exhibits parallelism

In the lecture:

• Show where sequential code is overspecified.

• Derive reordered sequences from the ddg.

• single assignment for ti: ti contains exactly one value; ti is not reused for other values.

• Without that assumption further dependencies have to manifest the order of assignments to those registers.

Suggested reading:

Kastens / Übersetzerbau, Section 8.5, Abb. 8.5-1

Assignments:

• Write the operations of the basic block in a different order, such that the effect is not changed and the same DDG is
produced.

Questions:

• Why does this example have so much freedom for rearranging operations?

• Why are further dependences necessary if registers are allocated?
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List Scheduling

Input : data dependence graph
Output : a schedule of at most k operations per cycle ,

such that all dependences point forward; DDG arranged in levels

Algorithm : A ready list  contains all operations that are not yet scheduled ,
but whose predecessors are scheduled
Iterate: select  from the ready list up to k operations for the next cycle (heuristic),

update  the ready list

C-5.3

1 2

3

4

5

6

7

8 9

10

11

cycle
1

2

3

4

• Algorithm is optimal  only for trees .

• Heuristic : Keep ready list sorted by
distance to an end node, e. g.

(1 2 5) (8 9 3) (6 10 4) (7 11)

without this heuristic:
(1 8 9) (2 5 10) (3 11) (6 4) (7)

( ) operations in one cycle

Critical paths  determine minimal schedule length: e. g. 1 -> 3 -> 6 -> 7
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Objectives:

A simple fundamental scheduling algorithm

In the lecture:

• Explain the algorithm using the example.

• Show variants of orders in the ready list, and their consequences.

• Explain the heuristic.

Suggested reading:

Kastens / Übersetzerbau, Section 8.5.1

Assignments:

• Write the parallel code for this example.

Questions:

• Explain the heuristic with respect to critical paths.
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Variants and Restrictions for List Scheduling
C-5.4

1 2

3

4

5

6

7

8 9

10

11

3

4

2

cut widthcycle
1

2

3

4

one value is used twice

Scheduled DDG models
number of needed registers :

• arc represents the use of an
intermediate result

• cut width  through a level
gives the number of
registers needed

The tighter the schedule the
more registers are needed
(register pressure).

• Allocate as soon as possible , ASAP (C-5.3); as late  as possible, ALAP

• Operations have unit execution time  (C-5.3); different execution times:
selection avoids conflicts with already allocated operations

• Operations only on specific functional units  (e. g. 2 int FUs, 2 float FUs)

• Resource restrictions  between operations, e. g. <= 1 load or store per cycle
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Objectives:

A simple fundamental scheduling algorithm

In the lecture:

• Explain ASAP and ALAP.

• Explain restrictions on the selection of operations.

• Show how the register need is modeled.

Suggested reading:

Kastens / Übersetzerbau, Section 8.5.1

Assignments:

• The algorithm allocates an operation as soon as possible (ASAP). Describe a variant of the algorithm which allocates
an operation as late as possible (ALAP).

• Describe a variant, that allocates operations of different execution times.

Questions:

• Compare the way register need is modeled with the approach of Belady for register allocation.

• Why need tight schedules more registers?
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Instruction Scheduling for Pipelining
C-5.5

I4 I5 nop I6 I7 ...
3 2 1 instruction sequence

nop

without scheduling:
 1: t1 := a
 2: t2 := b

nop
 3: t3 := t1 + t2

nop
 4: x := t3
 5: t4 := c

nop
 6: t5 := t3 + t4

nop
 7: y := t5
 8: t6 := d
 9: t7 := e

nop
10: t8 := t6 + t7

nop
11: z := t8

1: t1 := a
2: t2 := b
5: t4 := c
3: t3 := t1 + t2 with
8: t6 := d scheduling
9: t7 := e
6: t5 := t3 + t4 no delays
10: t8 := t6 + t7
4: x := t3
7: y := t5
11: z := t8

Instruction pipeline
with 3 stages:

Dependent instructions  may not
follow one another immediately.

Schedule rearranges the operation sequence,
to minimize the number of delays:
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Objectives:

Restrictions for pipelining

In the lecture:

• Requirements of pipelining processors.

• Compiler reorders to meet the requirements, inserts nops (empty operations), if necessary.

• Some processors accept too close operations, delays the second one by a hardware interlock.

• Hardware bypasses may relax the requirements

Suggested reading:

Kastens / Übersetzerbau, Section 8.5.2

Questions:

• Why are no nops needed in this example?
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Instruction Scheduling Algorithm for Pipelining
C-5.6

1: t1 := a
2: t2 := b
5: t4 := c
3: t3 := t1 + t2 with
8: t6 := d scheduling
9: t7 := e
6: t5 := t3 + t4
10: t8 := t6 + t7
4: x := t3
7: y := t5
11: z := t8

cycle
1
2
3
4
5
6
7
8
9
10
11

Algorithm : modified list scheduling:

Select from the ready list such that the
selected operation

• has a sufficient distance to all
predecessors  in DDG

• has many successors  (heuristic)

• has a long path to the end  node (heuristic)

Insert an empty operation if none is selectable.

Ready list with additional information:

opr. 1 2 5 8 9 3 6 4 10 7 11

succ # 1 1 1 1 1 2 1 0 1 0 0

to end 3 3 2 2 2 2 1 1 1 0 0

sched.
cycle

1 2 3 5 6 4 7 9 8 10 11

1 2

3

4

5

6

7

8 9

10

11x
y z

t1 t2

t3

t4

t5

t6 t7

t8

t3

data dependence graph
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Objectives:

Adapted list scheduling

In the lecture:

• Explain the algorithm using the example.

• Explain the selection criteria.

Suggested reading:

Kastens / Übersetzerbau, Section 8.5.2
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Reused registers: anti- and output-dependences
C-5.6b

1 2

3

4

5

6

7

8 9

10

11x
y z

t1 t2

t3

t4

t5

t6 t7

t8

t3

DDG with symbolic registers ti
flow-dependences only

1 2

3

4

5

6

7

8 9

10

11x
y z

t1 t2

t3

t2

t5

t1 t7

t8

t3

DDG with reused registers ti
flow, anti-, and output-dependences

o
o

a a

au v anti-dependence :
u uses a value
before v overwrites it

u v

u v

flow-dependence :
u writes before v uses

output-dependence :
u writes before v overwrites

o

Lecture Compilation Methods SS 2013 / Slide 506b

Objectives:

Understand anti- and output-dependences

In the lecture:

Explain anti- and output-dependences:

• Reuse of registers introduces new dependences
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DDG with Loop Carried Dependences

Factorial computation:

program: seq. machine code:

i = 0; f = 1;

while ( i != n) L: beq  r1, r2 : exit

{ i = i + 1; add  r1, 1  : r1

f = f * i; mul  r5, r1 : r5

add  r8, 4  : r8

m[i] = f; sto   r5 : m[r8]

} bra  L

C-5.6d

beq r1, r2 : exit

add r1, 1 : r1

mul r5, r1 : r5

bra L

add r8, 4: r8

sto r5 : m [r8]

a

a
a

Data dependence graph:

r5
r8

r1 r1

r8
r1

r5 r8

a

c

c

au v

flow-dependence  into

anti-dependence :
u uses a value

subsequent iteration

before v overwrites it

u

u

v

v

u v

flow-dependence :
u writes before v uses

output-dependence :
u writes before v overwrites

o
u vc control-dependence :

u has to be executed before v
(u or v may branch)
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Objectives:

Loop carried dependences

In the lecture:

Explain loop carried dependences

• the 4 kinds,

• they occur, because a new value is stored in the same register on every iteration,

• they are relevant, because we are going to merge operations of several iterations.

Questions:

• Explain why loops with arrays can have dependences into later iterations that are not the next one. Give an example.
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Loop unrolling
C-5.6u

sequential
loop

parallel schedule
for single body

unrolled loop
for unrolled loop
parallel schedule

Prologue and epilogue needed to take
care of iteration numbers that are not
multiples of the unroll factor

(3 times)

Loop unrolling: A technique for parallelization of loops.

A single loop body does not exhibit enough parallelism => sparse schedule.
Schedule the code (copies) of several adjacent iterations together

=> more compact schedule

Lecture Compilation Methods SS 2013 / Slide 506u

Objectives:

Understand the idea of loop unrolling

In the lecture:

• Compare the single body schedule to the schedule of the unrolled loop.

• Explain the consequences of loop carried dependences.

Suggested reading:

Kastens / Übersetzerbau, Section 8.5.2
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Software Pipelining
C-5.7

software pipelined
sequential

prologue

epilogue

loopII

II

II

pipelined

done

to be
done

Software Pipelining: A technique for parallelization of loops.

A single loop body does not exhibit enough parallelism => sparse schedule.
Overlap the execution of several adjacent iterations => compact schedule

The pipelined loop body

has each operation  of the original sequential body,
they belong to several iterations ,
they are tightly scheduled,
its length is the initiation interval II ,
is shorter  than the original body.

Prologue, epilogue : initiation and finalization code
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Objectives:

Understand the underlying idea

In the lecture:

• Explain the underlying idea

• II is both: length of the piplined loop and time between the start of two successive iterations.

Questions:

Explain:

• The shorter the initiation interval is, the greater is the parallelism, and the compacter is the schedule.
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Transform Loops by Software Pipelining

0
1

0
1

0
1

0
1

2
3

4
5

11

12
13 14

15

Modulo schedule for a loop body
cycle

11

12
13 14

15

21

22
23 24

25

31

32
33 34

35

loop length II

done

to be
done

C-5.8

Technique :

1. Data dependence graph  for the loop body,
include loop carried dependences .

2. Chose a small initiation interval II  -
not smaller than #instructions / #FUs

3. Make a „Modulo Schedule“  s for the loop body:
Two instructions can not be scheduled on the same FU, i1
in cycle c1 and i2 in cycle c2, if c1 mod II = c2 mod II

4. If (3) does not succeed without conflict, increase II and
repeat from 3

5. Allocate the instructions of s in the new loop of length II:
ij scheduled in cycle cj is allocated to cj mod II

6. Construct prologue and epilogue.

... = t1;

t1 = ...;
...
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Objectives:

Understand the technique

In the lecture:

• Explain the algorithm.

• Explain reasons for conflicts in step 4.

Questions:

Explain:

• The shorter the initiation interval is, the greater is the parallelism, and the compacter is the schedule.

• The transformed loop contains each instruction of the loop body exactly once.
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Result of Software Pipelining

t tm ADD MUL MEM CTR

0 0 L: beq r1, r2:exit

1 1 add r1, 1: r1

2 0 add r8, 4 : r8 mul r5, r1 : r5

3 1 ... mul

4 0 sto  r5 : m r8

5 1 ... sto

6 0

7 1 bra L

t tm ADD MUL MEM CTR

0 0 beq r1;r2:exit

1 1 add r1, 1 : r1

2 0 add r8, 4 : r8 mul r5, r1 : r5 beq r1; r2 : ex

3 1 add r1, 1 : r1 ... mul

4 0 L: add r8, 4 : r8 mul r5, r1 : r5 sto  r5 : m r8 beq r1; r2 : ex

5 1 add r1, 1 : r1 ... mul ... sto bra L

6 1 ex: ... mul ... sto

7 0 sto  r5 : m r8

8 1 ... sto

9 0 bra exit

C-5.10

4 dedicated FUs
schedule of the
loop body for II = 2

mul and sto need 2 cycles

add and sto in tm=0,
sto reads r8 before
add writes it

bra not in cycle 6,
it collides with beq: tm=0

prologue

software pipline
with II = 2

epilogue
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Objectives:

A software pipeline for a VLIW processor

In the lecture:

Explain

• the properties of the VLIW processor,

• the schedule,

• the software pipline,

Assignments:

• Make a table of run-times in cycles for n = 1, 2, ... iterations, and compare the figures without and with software
pipelining.
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5.2 / 6. Data Parallelism: Loop Parallelization
C-5.11 / PPJ-50

Development steps (automated by compilers):

• nested loops  operating on arrays ,
sequential execution of iteration space

• analyze data dependences
data-flow: definition and use of array elements

• transform loops
keep data dependences forward in time

• parallelize inner loop(s)
map to field or vector of processors

• map arrays to processors
such that many accesses are local,
transform index spaces

DECLARE B[0..N,0..N+1]

FOR I := 1 ..N
FOR J := 1 .. I

B[I,J] :=
B[I-1,J]+B[I-1,J-1]

END FOR
END FOR

N1

1

N

i

j

1-N

1 N

-1

i
j
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N

1

-N

-1

i

N

j

Regular loops  on orthogonal data structures - parallelized for data parallel  processors
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Objectives:

Overview

In the lecture:

Explain

• Application area: scientific computations

• goals: execute inner loops in parallel with efficient data access

• transformation steps



©
 2

00
9 

be
i P

ro
f. 

D
r.

 U
w

e 
K

as
te

ns

Iteration space of loop nests

Iteration space of a loop nest of depth n:

• n-dimensional space of integral points (polytope)

• each point (i1, ..., in) represents an execution of the innermost loop body

• loop bounds are in general not known before run-time

• iteration need not have orthogonal borders

• iteration is elaborated sequentially

C-5.12 / PPJ-51

DECLARE B[-1..N,-1..N]

FOR I := 0 .. N
FOR J := 0 .. I

B[I,J] :=
B[I-1,J]+B[I-1,J-1]

END FOR
END FOR

example:
computation of Pascal’s triangle

J

IN

N

Lecture Compilation Methods SS 2013 / Slide 512

Objectives:

Understand the notion of iteration space

In the lecture:

• Explain the iteration space of the example.

• Show the order of elaboration of the iteration space.

• If the step size is greater than 1 the iteration space has gaps - the polytope is not convex.

Questions:

• Draw an iteration space that has step size 3 in one dimension.
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Examples for Iteration spaces of loop nests
C-5.12a / PPJ-51a

J

IN

N

FOR I := 0 .. N
FOR J := 0 .. I

J

IN

N

FOR I := 0..N BY 2
FOR J := 0 .. I

J

IN

N

FOR I := 0 .. N
FOR J := 0..I BY 2

J

I

FOR I := 0 .. N
FOR J := I..I+M

M = 3, N = 4

M

N

J

I

FOR I := 0 .. M+N
FOR J := max(0, I-M)..

min (I, N)

M

N

M+N

Lecture Compilation Methods SS 2013 / Slide 512a

Objectives:

Relate loop nests to iteration spaces

In the lecture:

• Explain the iteration spaces of the examples
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Data Dependences in Iteration Spaces

Data dependence from iteration point i1 to i2 :

• Iteration i1 computes a value that is
used in iteration i2 (flow dependence)

• relative dependence vector
d = i2 - i1  = (i21 - i11, ..., i2n - i1n)
holds for all iteration points except at the border

• Flow-dependences can not be directed against
the execution order , can not point backward in time:
each dependence vector must be lexicographically
positive , i. e. d = (0, ..., 0, di, ...), di > 0

C-5.13 / PPJ-52

DECLARE B[-1..N,-1..N]

FOR I := 0 .. N
FOR J := 0 .. I

B[I,J] :=
B[I-1,J]+B[I-1,J-1]

END FOR
END FOR

Example:
Computation of Pascal´s triangle

(0,1)

(1,0)

(0,-1)

forward

backward (1,-5)

J

IN

N
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Objectives:

Understand dependences in loops

In the lecture:

Explain:

• Vector representation of dependences,

• examples,

• admissable directions graphically

Questions:

• Show different dependence vectors and array accesses in a loop body which cause dependences of given vectors.
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Loop Transformation
C-5.14 / PPJ-53

non-linear transformations , e. g.

• Scaling : stretch the iteration space  in
one dimension, causes gaps

• Tiling : introduce additional inner loops
that cover tiles  of fixed size

linear basic transformations:

• Skewing : add iteration count of an
outer loop to that of an inner one

• Reversal : flip execution order
for one dimension

• Permutation : exchange two loops
of the loop nest

SRP transformations  (next slides)

The iteration space  of a loop nest is
transformed to new coordinates . Goals:

• execute innermost loop(s) in parallel

• improve locality  of data accesses;
in space : use storage of executing processor,
in time : reuse values stored in cache

• systolic  computation and communication scheme

Data dependences must point forward in time , i.e.
lexicographically positive  and
not within parallel dimensions

scaling

tiling

Lecture Compilation Methods SS 2013 / Slide 514

Objectives:

Overview

In the lecture:

• Explain the goals.

• Show admissable directions of dependences.

• Show diagrams for the transformations.



C-5.14a / PPJ-54

Transformations
of

data

loop nests

convex polytope

Lecture Compilation Methods SS 2013 / Slide 514a

Objectives:

Visualize the transformations

In the lecture:

• Give concrete loops for the diagrams.

• Show how the dependence vectors are transformed.

• Skewing and scaling do not change the order of execution; hence, they are always applicable.

Questions:

• Give dependence vectors for each transformation, which are still valid after the transformation.
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Transformations defined by matrices

Transformation matrices: systematic transformation, check dependence vectors

C-5.14b / PPJ-55

( ) ((( ) ) )* = =
1

-1
0

0
i
j

i
-j

i’
j’

Reversal

( ) ((( ) ) )* = =
1

1
0

f
i
j

i
f* i+j

i’
j’

Skewing

( ) ((( ) ) )* = =
0

0
1

1
i
j

j
i

i’
j’

Permutation

Lecture Compilation Methods SS 2013 / Slide 514b

Objectives:

Understand the matrix representation

In the lecture:

• Explain the principle.

• Map concrete iteration points.

• Map dependence vectors.

• Show combinations of transformations.

Questions:

• Give more examples for skewing transformations.
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Reversal

Iteration count of one loop is negated , that dimension is enumerated backward

C-5.15 / PPJ-55a

( ) ((( ) ) )* = =
1

-1
0

0
i
j

i
-j

ir
jr

loop variables
old new( )1

1
-1

1
1

...

... 0

0

2-dimensional:

for i = 0 to M
for j = 0 to N

...

for ir = 0 to M
for jr = -N to 0

...

j

iM

N
jr ir

M

-N

original

transformed

general transformation matrix

Lecture Compilation Methods SS 2013 / Slide 515

Objectives:

Understand reversal transformation

In the lecture:

• Explain the effect of reversal transformation.

• Explain the notation of the transformation matrix.

• There may be no dependences in the direction of the reversed loop - they would point backward after the
transformation.

Questions:

• Show an example where reversal enables loop fusion.
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Skewing

The iteration count of an outer loop is added to the count of an inner loop;
iteration space is shifted; execution order  of iteration points remains unchanged

( ) ((( ) ) )* = =
1

1
0

f
i
j

i
f*i+j

is
js

loop variables
old new( )1

1
1

1
1

...

... 0

0

2-dimensional:

for i = 0 to M
for j = 0 to N

...

for is = 0 to M
for js = f*is to N+f*is

...

j

iM

N

original

transformed

general transformation matrix:

f

js

isM

N

N+M

C-5.16 / PPJ-55b
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Objectives:

Understand skewing transformation

In the lecture:

• Explain the effect of a skewing transformation.

• Skewing is always applicable.

• Skewing can enable loop permutation

Questions:

• Show an example where skewing enables loop permutation.
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Permutation

Two loops of the loop nest are interchanged ; the iteration space is flipped;
the execution order  of iteration points changes; new dependence vectors must be legal.

( ) ((( ) ) )* = =
0

0
1

1
i
j

j
i

ip
jp

loop variables
old new( )1

1
0
1

1
...

0 0

0

2-dimensional:

for i = 0 to M
for j = 0 to N

... for ip = 0 to N
for jp = 0 to M

...j

iM

N

original

transformed

general transformation matrix:

1

jp

ipN

M

1i

i

j

j

C-5.17 / PPJ-55c
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Objectives:

Understand loop permutation

In the lecture:

• Explain the effect of loop permutation.

• Show effect on dependence vectors.

• Permutation often yields a parallelizable innermost loop.

Questions:

• Show an example where permutation yields a parallelizable innermost loop.
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Use of Transformation Matrices

• Transformation matrix T defines new iteration counts  in terms of the old ones: T *  i = i´

• Transformation matrix T transforms old dependence vectors  into new ones: T *  d = d´

• inverse Transformation matrix T -1 defines old iteration counts  in terms of new ones,
for transformation of index expressions in the loop body: T - 1 *  i´ = i

• concatenation of transformations  first T1 then T2 : T2 * T1 = T

C-5.18 / PPJ-56

( ) ((( ) ) )* = =
1

-1
0

0
i
j

i
-j

i’
j’

e. g. Reversal

( ) (( ) )* =
1

-1
0

0
1
1

1
-1

e. g.

( ) (( ) )* =
1

-1
0

0
e. g.

i’
j’

i’
-j’ ( )=

i
j

( )1
-1
0

0
e. g. ( *

0
0
1

1 ) = ( 0
0
-1

1 )
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Objectives:

Learn to Use the matrices

In the lecture:

• Explain the 4 uses with examples.

• Transform a loop completely.

Questions:

• Why do the dependence vectors change under a transformation, although the dependence between array elements
remains unchanged?
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Inequalities Describe Loop Bounds

The bounds of a loop nest are described by a set of linear inequalities .
Each inequality separates the space  in „inside and outside of the iteration space“:

positive  factors represent upper  bounds
negative  factors represent lower  bounds

C-5.19 / PPJ-56a

( )( () )≤*

-1
1
0
0

0
0

-1
1

i
j

0
M
0
N

B * i ≤ c

1 -i ≤ 0

2 i ≤ Μ

3 -j ≤ 0

4 j ≤ Ν

1 2

3

4

( )( () )*

-1
1
0
0

1
0

-1
1

i
j

0
M
0
N

1 -i +j ≤ 0

N

M

1 2

3

4
N

M

example 1

example 2

≤
2 i ≤ Μ

3 -j ≤ 0

4 j ≤ Ν

transformed

1, 4: j ≤ min (i, N)

3: 0 ≤ j

1+ 3: 0 ≤ i

2: i ≤ M
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Objectives:

Understand representation of bounds

In the lecture:

• Explain matrix notation.

• Explain graphic interpretation.

• There can be arbitrary many inequalities.

Questions:

• Give the representations of other iteration spaces.
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Transformation of Loop Bounds

The inverse of a transformation matrix T - 1 transforms a set of inequalities: B * T - 1 i’ ≤ c

C-5.20 / PPJ-56b

)( ( )*
i’
j’

0
M
0
N

1 -i´ ≤ 0

2 i´ ≤ Μ

3 i´ - j´ ≤ 0

4 -i´ + j´ ≤ Ν

)( 1
1

0

1 )( 1
-1

0

1

skewing inverse

( )-1
1
0
0

0
0

-1
1

* )( 1
-1

0

1 ( )-1
1
1
-1

0
0

-1
1

( )-1
1
1
-1

0
0

-1
1

B T - 1 B * T - 1

B * T - 1 i’ c

example 1

1

2

3

4

N

M

new bounds:

=

≤
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Objectives:

Understand the transformation of bounds

In the lecture:

• Explain how the inequalities are transformed

Questions:

• Compute further transformations of bounds.
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Example for Transformation and Parallelization of a Loop

for i = 0 to N
for j = 0 to M

a[i, j] = (a[i, j-1] + a[i-1, j]) / 2;

Parallelize the above loop.

1. Draw the iteration space.

2. Compute the dependence vectors and draw examples of them into the iteration space.
Why can the inner loop not be executed in parallel?

3. Apply a skewing transformation and draw the iteration space.

4. Apply a permutation transformation and draw the iteration space.
Explain why the inner loop now can be executed in parallel.

5. Compute the matrix of the composed transformation and
use it to transform the dependence vectors.

6. Compute the inverse of the transformation matrix and
use it to transform the index expressions.

7. Specify the loop bounds by inequalities and
transform them by the inverse of the transformation matrix.

8. Write the complete loops with new loop variables ip and jp and new loop bounds.

C-5.21 / PPJ-56c
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Objectives:

Exercise the method for an example

In the lecture:

• Explain the steps of the transformation.

• Solution on C-5.22

Questions:

• Are there other transformations that lead to a parallel inner loop?
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Solution of the Transformation and Parallelization Example

1 -jp ≤ 0
2 jp ≤ Ν
3 -ip+jp ≤ 0
4  ip - jp ≤ Μ

( )0
0

-1
1

-1
1
1

-1

B * T - 1

( )0N0
M

( )-1
1
0
0

0
0
-1
1

B
1, 3 => 0 ≤ ip

2, 4 => ip  ≤ M+N

1, 4 => max (0, ip-M)  ≤ jp

2, 3 => jp  ≤ min (ip, N)

c7. Bounds:
new:orig.:

C-5.22 / PPJ-56d

M=4

N=7

M=4

M=4 M+N

N=7

M+N

N=7

( )1 1
1 0 ( )0

1 ( )1
0

= ( )1 1
1 0 ( )1

0 ( )1
1

=

i

j

jp

ip

( )0 1
1 -1

Inverse

1., 2.: 3.: 4.:

5.: 6.:

8. for ip = 0 to M+N
for jp = max (0, ip-M) to min (ip, N)

a[jp, ip-jp] = (a[jp, ip-jp-1] + a[jp-1, ip-jp]) / 2;
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Objectives:

Solution for C-60

In the lecture:

Explain

• the bounds of the iteration spaces,

• the dependence vectors,

• the transformation matrix and its inverse,

• the conditions for being parallelizable,

• the transformation of the index expressions

• the transformation of the loop bounds.

Questions:

• Describe the transformation steps.



Transformation and Parallelization
C-5.23 / PPJ-57

Iteration space
original

DECLARE B[-1..N,-1..N]

FOR IS := 0.. N
FOR JS := -IS .. 0

B[IS,JS+IS] :=
B[IS-1,JS+IS]+B[IS-1,JS-1+IS]

END FOR
END FOR

J

IN

N

DECLARE B[-1..N,-1..N]

FOR I := 0 .. N
FOR J := 0 .. I

B[I,J] :=
B[I-1,J]+B[I-1,J-1]

END FOR
END FOR

N

-N

IS
JS

parallel processor map
JS mod 2

transformed
(I, J) -> (I, J-I) = (IS, JS)

sequential time IS
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Objectives:

Example for parallelization

In the lecture:

• Explain skewing transformation: f = -1

• Inner loop in parallel.

• Explain the time and processor mapping.

• mod 2 folds the arbitrary large loop dimension on a fixed number of 2 processors.

Questions:

• Give the matrix of this transformation.

• Use it to compute the dependence vectors, the index expressions, and the loop bounds.
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Data Mapping
C-5.24 / PPJ-58

Goal :
Distribute array elements  over processors, such that
as many accesses as possible are local.

Index space of an array:
n-dimensional space of integral index points (polytope)

• same properties as iteration space

• same mathematical model

• same transformations  are applicable
(Skewing, Reversal, Permutation, ...)

• no restrictions  by data dependences
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Objectives:

Reuse model of iteration spaces

In the lecture:

Explain, using examples of index spaces

Questions:

• Draw an index space for each of the 3 transformations.



Data distribution for parallel loops
C-5.25 / PPJ-59

DECLARE B[-1..N,-N..N]
...

B[IS,JS] :=
B[IS-1,JS-1]+B[IS-1,JS-1]

index space of B
original transformed

skewing f=-1
(i,j) -> (i,j-i)

J

IN

N

Data on P0

P0 
writ

es
 B

[I,
J]

50% local
100%local

N

-N

I

J

N

DECLARE B[-1..N,-1..N]

FOR IS := 0.. N
FOR JS := -IS .. 0

B[IS,JS+IS] :=
B[IS-1,JS+IS]+B[IS-1,JS-1+IS]

END FOR
END FOR
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Objectives:

The gain of an index transformation

In the lecture:

Explain

• local and non-local accesses,

• the index transformation,

• the gain of locality,

• unused memory because of skewing.

Questions:

• How do you compute the index transformation using a transformation matrix?


