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3. Code Generation
C-3.1

Implementation of code generation:

• Storage mapping:
a traversal through the program and the
definition module computes
sizes and addresses of storage objects

• Code selection: use a generator for
pattern matching in trees

• Register allocation:
methods for expression trees, basic
blocks, and for CFGs

Design of code generation:

• analyze properties of the target
processor

• plan storage mapping

• design at least one instruction
sequence  for each operation of the
intermediate language

Input:  Program in intermediate language

Tasks:
Storage mapping properties of program objects (size, address)

in the definition module
Code selection generate instruction sequence, optimizing selection
Register allocation use of registers for intermediate results and for variables

Output:  abstract machine program, stored in a data structure
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Objectives:

Overview on design and implementation

In the lecture:

• Identify the 3 main tasks.

• Emphasize the role of design.

Suggested reading:

Kastens / Übersetzerbau, Section 7
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3.1 Storage Mapping

Objective:
for each storable program object compute storage class, relative address, size

Implementation:
use properties in the definition module, traverse defined program objects

Design the use of storage areas:

code storage progam code

global data to be linked for all compilation units

run-time stack activation records for function calls

heap storage for dynamically allocated objects, garbage collection

registers for addressing of storage areas (e. g. stack pointer)
function results, arguments
local variables, intermediate results (register allocation )

Design the mapping of data types (next slides)
Design activation records and translation of function calls (next section)

C-3.2
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Objectives:

Design the mapping of the program state on to the machine state

In the lecture:

Explain storage classes and their use

Suggested reading:

Kastens / Übersetzerbau, Section 7.2
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Storage Mapping for Data Types
C-3.3

Basic types

arithmetic, boolean, character types

match language requirements and machine properties:
data format, available instructions,
size and alignment in memory

Structured types

for each type representation in memory and
code sequences for operations,
e. g. assignment, selection, ...

record relative address and
alignment of components;
reorder components for optimization

union storage overlay,
tag field for discriminated union

set bit vectors, set operations

for arrays  and functions  see next slides
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Objectives:

Overview on type mapping

In the lecture:

The topics on the slide are explained. Examples are given.

• Give examples for mapping of arithmetic types.

• Explain alignment of record fields.

• Explain overlay of union types.

• Discuss a recursive algorithm for type mapping that traverses type descriptions.

Suggested reading:

GdP slides on data types
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Array Implementation: Pointer Trees

...

...

l3

u3

l3

u3

l2

u2

l1

u1

10

5

4

C-3.4

An n-dimensional array

a: array[l1..u1, l2..u2, ..., ln..un] of real;

is implemented by a tree of linear arrays ;
n-1 levels of pointer arrays and data arrays on the n-th level

Each single array can be allocated separately, dynamically; scattered in memory

In Java arrays  are implemented this way.
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Objectives:

Understand implementation variant

In the lecture:

Aspects of this implementation variant are explained:

• allocation by need,

• non-orthogonal arrays,

• additional storage for pointers,

• costly indirect access

Assignments:

Allocate an array in Java that has the shape of a pyramid. How many pointer and data cells are needed?
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Array Implementation: Contiguous Storage

10

5

4

store[start] ... store[start + elno*elsz - 1]
start

C-3.5

An n-dimensional array

a: array[l1..u1, l2..u2, ..., ln..un] of real;

is mapped to one contiguous storage area
linearized in row-major order :

linear storage map of array a onto byte-array store  from index start :
number of elements elno = st1 * st2 * ... * stn
i-th index stride sti = ui - li + 1
element size in bytes elsz

Index map of a[i1, i2, ..., in] :

store[start+ (..((i1-l1)*st2 + (i2-l2))*st3 +..)*stn + (in-ln))*elsz]

store[const + (..(i1*st2 + i2)*st3 +..)*stn + in)*elsz]
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Objectives:

Understand implementation variant

In the lecture:

Aspects of this implementation variant are explained:

• Give an example for a 3-dimensional array.

• Explain the index function.

• Explain the index function with constant terms extracted.

• Compare the two array implementation variants:

• Allocation in one chunk,

• orthogonal arrays only,

• storage only for data elements,

• efficient direct addressing.

• FORTRAN: column major order!

Suggested reading:

GdP slides on data types

Questions:

• What information is needed in an array descriptor for a dynamically allocated multi-dimensional array?
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Functions as Data Objects
C-3.6

Functions may occur as data objects :

• variables

• parameters

• function results

• lambda expressions
(in functional languages)

Functions that are defined on the
outermost program level (non-nested)

can be implemented by just the
address of the code .

Functions that are defined in nested structures  have to be
implemented by a pair: (closure, code)

The closure contains all bindings of names to variables or values that
are valid when the function definition is executed .

In run-time stack  implementations the
closure is a sequence of activation records on the static
predecessor chain.
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Objectives:

Understand the concept of closure

In the lecture:

The topics on the slide are explained:

• examples for functions as data objects,

• recall functional programming (GdP),

• closures as a sequence of activation records,

• relate closures to run-time stacks

Suggested reading:

GdP slides on run-time stack

Questions:

• Why must a functional parameter in Pascal be represented by a pair (closure, code)?
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3.2 Run-Time Stack
Activation Records

Run-time stack  contains one activation record  for each active function call.

Activation record:
provides storage for the data of a function call.

dynamic link:
link from callee to caller,
to the preceding record on the stack

static link:
link from callee c to the record s where c is defined

s is a call of a function which contains the definition
of the function, the call of which created c.

Variables of surrounding functions  are
accessed via the static predecessor chain.

Only relevant for languages which allow
nested functions , classes, objects.

closure of a function call:
the activation records on the static predecessor chain

C-3.7

parameters

static link

return address

dynamic link

local variables

register save area

activation record:
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Objectives:

Understand activation records

In the lecture:

Explain

• static and dynamic links,

• Explain nesting and closures,

• return address.

See C-3.10 for relation to call code.
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Example for a Run-Time Stack

Run-time stack :
A call creates an activation record and pushes it onto the stack.
It is popped on termination of the call.

The static link  points to the activation record where the called function is defined, e. g. r3 in q3

Optimization: activation records of non-recursive functions  may be allocated statically.

Languages without recursive functions (FORTRAN) do not need a run-time stack.

Parallel processes, threads, and coroutines need a separate run-time stack  each.

C-3.8

q
int i;

r

b=i+1;

if(..) q();
r();

q();

h float a;

int b;

nested
h

q1

q2

q3

r

q:

i:
r 1:

i:
r 2:

i:
r 3:

b=i+1;

a:

b:

static
links

push, pop

functions
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Objectives:

Understand run-time stacks

In the lecture:

• Explain static links.

• Explain nesting and closures.

Questions:

• Why do threads need a separate run-time stack?
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Not-Most-Recent Property

The static link  of an activation record c for a function r
points to an activation record d for a function q where r is defined in.
If there are activation records for q on the stack, that are more recently created than d,
the static link to d is not-most-recent .

That effect can be achieved by using functional parameters or variables.
Example:

C-3.9

q(funct f)
int i;

r

b=i+1;

if(..) q(r);

*f();

q(q);

h float a;

int b;

nested
h

q3

r 2

q:

i:
r 3:

b=i+1;

a:

b:

static
links

functions

f: r 2

q2
i:
r 2:

f: r 1

q1
i:
r 1:

f: q

not-most-
recent
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Objectives:

Really understand static links

In the lecture:

• Explain not-most-recent property.

• r[1] and r[2] must be represented by different values, because they have different closures.
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Closures on Run-Time Stacks

Function calls can be implemented by a run-time stack if the

closure of a function is still on the run-time stack when the function is called .

Language conditions  to guarantee run-time stack discipline:

Pascal: functions not allowed as function results, or variables

C: no nested functions

Modula-2: nested functions not allowed as values of variables

Functional languages  maintain activation records on the heap instead of the run-time stack

C-3.10

q
int i;

r

b=i+1;

return r;

*(q()) ();

h float a;

int b;

h

r

q:

b=i+1;

a:

b:q1 i:
r 1:

h
q:
a:

?

during the
call of q

the closure
for the call of r
is missing

Example for violation:
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Objectives:

Language condition for run-time stacks

In the lecture:

• Explain language restrictions to ensure that necessary closures are on the run-time stack.

Questions:

• Explain why C, Pascal, and Modula-2 obey the requirement on stack discipline?
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Activation Records and Call Code
C-3.11

result
parameters
static link
return address
dynamic link
local variables

register save area

activation record:

- +

+ -

base
address

0

call code function code

push parameter values
push static link
subroutine jump

pop static link
pop parameter area
use and pop result

push dynamic link
stack register := top of stack
increment top of stack
for local variables
save registers
...
function body
...
restore registers
deallocate local variables
pop stack register
return jump
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Objectives:

Relation between activation record and call code

In the lecture:

Explain

• contents of records,

• how to save registers,

• relative addresses of data in the activation record

• register windowing related to run-time stacks

Suggested reading:

Kastens / Übersetzerbau, Section 7.2.2, 7.3.1

Questions:

• How would you design the layout of activation records for a processor that provides register windowing?
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3.3 Code Sequences for Control Statements

A code sequence  defines how a control statement  is transformed into jumps and labels.

Notation  of the Code constructs:

Code (S) generate code for statements S

Code (C, true, M) generate code for condition C such that
it branches to M if C is true,
otherwise control continues without branching

Code (A, Ri) generate code for expression A such that the
result is in register Ri

C-3.12

Code sequence for if-else statement:

if (cond) ST; else SE;:

Code (cond, false, M1)
Code (ST)
goto M2

M1: Code (SE)
M2:
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Objectives:

Concept of code sequences for control structures

In the lecture:

• Explain the notation.

• Explain the code sequence for if-else statements.
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Short Circuit Translation of Boolean Expressions

Boolean expressions  are translated into sequences of conditional branches .
Operands are evaluated from left to right until the result is determined.

2 code sequences for each operator; applied to condition tree on a top-down traversal:

C-3.13

if a or b and c then ST else SE

true

false

Code (A and B, true, M) : Code (A, false, N)
Code (B, true, M)
N:

Code (A and B, false, M) : Code (A, false, M)
Code (B, false, M)

Code (A or B, true, M) : Code (A, true, M)
Code (B, true M)

Code (A or B, false, M) : Code (A, true, N)
Code (B, false, M)
N:

Code (not A, X, M) : Code (A, not X, M)

Code (A < B, true, M) : Code (A, Ri);
Code (B, Rj)
cmp Ri, Rj
braLt M

Code (A < B, false, M) : Code (A, Ri);
Code (B, Rj)
cmp Ri, Rj
braGe M

Code for a leaf: conditional jump

Lecture Compilation Methods SS 2011 / Slide 313

Objectives:

Special technique for translation of conditions

In the lecture:

• Explain the transformation of conditions.

• Use the example of C-3.14

• Use 2 inherited attributes for the target label and the case when to branch.

• Discuss whether the technique may be applied for C, Pascal, and Ada.

Suggested reading:

Kastens / Übersetzerbau, Section 7.3.3

Questions:

• Why does the transformation of conditions reduce code size?

• How is the technique described by an attribute grammar?

• Why is no instruction generated for the operator  not ?

• Discuss whether the technique may or must be applied for C, Pascal, and Ada.
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Example for Short Circuit Translation
C-3.14

if a or b and c then ST else SE

true

false

if-stmt

ST goto M2; M1: SE; M2:
or

a and

b c

condition target

f M1

t N f M1

f M1 f M1

N:

load a, R1
braNe N

load b, R1
braEq M1

load c, R1
braEq M1

code

1

2 3

4

5 6

3

inherited
attributes

then-part else-part
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Objectives:

Illustrate short circuit translation

In the lecture:

Discuss together with C-3.13

Suggested reading:

Kastens / Übersetzerbau, Section 7.3.3
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Code Sequences for Loops
C-3.15

While-loop variant 1:

while (Condition) Body

M1: Code (Condition, false, M2)
Code (Body)
goto M1

M2:

While-loop variant 2:

while (Condition) Body

goto M2
M1: Code (Body)
M2: Code (Condition, true, M1)

Pascal for-loop unsafe variant:

for i:= Init to Final do Body

i = Init
L: if (i>Final) goto M

Code (Body)
i++
goto L

M:

Pascal for-loop safe variant :

for i:= Init to Final do Body

if (Init==minint) goto L
i = Init - 1
goto N

L: Code (Body)
N: if (i>= Final) goto M

i++
goto L

M:
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Objectives:

Understand loop code

In the lecture:

• Explain the code sequences for while-loops.

• Discuss the two variants.

• Explain the code sequences for for-loops.

• Variant 1 may cause an exception if Final evaluates to maxint.

• Variant 2 avoids that problem.

• Variant 2 needs further checks to avoid an exception if Init evaluates to minint.

• Both variants should not evaluate the Final expression on every iteration.

Questions:

• What are the advantages or problems of each alternative?
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3.4 Code Selection
C-3.16

cont

addradd

addradd
R2,12

R6,12
addr
R6,12

add
R1

cont

const
6

load R6,8
addr
R6,8

(R2,18)

R2,18

6

load (R6,8), R1
add R6,R1,R2
store (R2,18),...

cost: 3 instructions

a

ix

s

assign
void

...

store   R5
cont

load

addradd
R4,12

addradd
R2,12

R6,12
addr
R6,12

add R1
cont

add R3
constmove6

load
R6,8addr

R6,8load (R6,8), R1
add R6,R1,R2
move 6,R3
add R2,R3,R4
load (R4,12),R5
store R5, ...

cost: 6 instructions

a

ix

s

assign
void

...
store

• Given: target tree in intermediate language.

• Optimizing selection: Select patterns that translate single nodes or small subtrees
into machine instructions; cover the whole tree with as few instructions as possible.

• Method: Tree pattern matching, several techniques

Example: assignment
... = a[i].s;

assumed:
R6: points to current activation record
relative address of a is 12
induct. var. i is substituted by ix, rel. adr 8
record elem. s has rel. adr. 6
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Objectives:

Understand the task

In the lecture:

The topics on the slide are explained. Examples are given.

• The task is explained.

• Example: Code of different cost for the same tree.
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Selection Technique: Value Descriptors

alternative translation patterns  to be selected context dependend:

addradd

Ri, c1 c2

Ri, c1 + c2

addradd

Ri Rj

Rk

addradd Ri, c1 c2 -> Ri, c1 + c2 ./. addradd Ri Rj -> Rk add Ri, Rj, Rk

Value descriptors  state how/where the
value of a tree node is represented, e. g.

Ri value in register Ri
c constant value c

Ri,c address Ri + c

(adr) contents at the address adr

C-3.17

Intermediate language tree node operators ;
e.g.:

addr address of variable
const constant value
cont load contents of address
addradd address + value
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Objectives:

Notion of value descriptors

In the lecture:

• Explain value descriptors

• Explain alternative translation patterns

• Concept of deferred operations

• Different costs of translations

• Compare with the concept of overloaded operators: here, selection by kind of value descriptor.

Suggested reading:

Kastens / Übersetzerbau, Section 7.3.4

Questions:

• How is the technique related to overloaded operators in source languages?
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Example for a Set of Translation Patterns
C-3.18

# operator operands result code
1 addr Ri, c -> Ri,c ./.

2 const c -> c ./.
3 const c -> Ri move c, Ri

4 cont Ri, c -> (Ri, c) ./.
5 cont Ri -> (Ri) ./.
6 cont Ri, c -> Rj load (Ri, c), Rj
7 cont Ri -> Rj load (Ri), Rj

8 addradd Ri c -> Ri, c ./.
9 addradd Ri, c1 c2 -> Ri, c1 + c2 ./.
10 addradd Ri Rj -> Rk add Ri, Rj, Rk
11 addradd Ri, c Rj -> Rk, c add Ri, Rj, Rk

12 assign Ri Rj -> void store Rj, Ri
13 assign Ri (Rj, c) -> void store (Rj,c), Ri
14 assign Ri,c Rj -> void store Rj, Ri,c
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Objectives:

Example

In the lecture:

• Explain the meaning of the patterns.

• Use the example for the tree of C-3.19

Suggested reading:

Kastens / Übersetzerbau, Section 7.3.4
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Tree Covered with Translation Patterns
C-3.19

cont

addradd

addradd
R2,12

R6,12
addr
R6,12

add
R1

cont

const
6

load
R6,8
addr
R6,8

(R2,18)

R2,18

6

load (R6,8), R1
add R6,R1,R2
store (R2,18),...

cost: 3 instructions

1

1

11

6

4

2

9

assign
void

...

13

store   R5
cont

load

addradd
R4,12

addradd
R2,12

R6,12
addr
R6,12

add R1
cont

add
R3

constmove6

loadR6,8
addr
R6,8

load (R6,8), R1
add R6,R1,R2
move 6,R3
add R2,R3,R4
load (R4,12),R5
store R5, ...
cost: 6 instructions

1

1

6

11

11

3
6

assign
void

...

12

store

tree for assignment
... = a[i].s;

6

application of pattern #6
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Objectives:

Example for pattern applications

In the lecture:

• Show applications of patterns.

• Show alternatives and differences.

• Explain costs accumulated for subtrees.

• Compose code in execution order.
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Pattern Selection
C-3.20

cont

addradd

addradd

addr cont

const

addr

load (R6,8), R1
add R6,R1,R2
store (R2,18),...

cost: 3 instructions

{(void,lhscost+3)}

{((Ri+c),2), (Ri,3)}

{(Ri+c,2), (Ri+c,4)}

{(Ri+c,2)}

{(Ri+c,0)} {((Ri+c),0), (Ri,1)}

{(Ri+c,0)}

{(c,0), (Ri,1)}

4 6

9 11

11

1 4 6

1

2 3

assign

... 13

Pass 1 bottom-up:

Annotate the nodes with sets of pairs
{ (v, c) | v is a kind of value descriptor that an

applicable pattern yields,
c are the accumulated subtree costs}

If (v, c1), (v, c2) keep only the cheaper pair.

Pass 2 top-down:

Select for each node the cheapest pattern,
that fits to the selection made above.

Pass 3 bottom-up:

Emit code.

Improved technique:

relative costs per sets =>
finite number of potential sets
integer encoding of the sets at generation time
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Objectives:

2-pass selection algorithm

In the lecture:

• Explain the role of the pairs and sets.

• Show the selection using the following pdf file: an example for pattern selection

• Overloading resolution in Ada is performed in a similar way (without costs).
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Pattern Matching in Trees: Bottom-up Rewrite
C-3.21

Bottom-up Rewrite Systems (BURS) :
a general approach of the pattern matching method:

Specification in form of tree patterns, similar to C-3.18 - C-3.20

Set of patterns is analyzed at generation time.

Generator produces a tree automaton with a finite set of states.

On the bottom-up traversal it annotates each tree node with
a set of states:
those selection decisions which may lead to an optimal solution.

Decisions are made on the base of the costs of subtrees
rather than costs of nodes.

Generator: BURG
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Objectives:

Get an idea of the BURS method

In the lecture:

• Explain the basic ideas of BURS.

• Compare it to the previous technique.

• Decides on the base of subtree costs.

• Very many similar patterns are needed.

Suggested reading:

Kastens / Übersetzerbau, Section 7.4.3

Questions:

• In what sense must the specification be complete?
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Tree Pattern Matching by Parsing

The tree is represented in prefix form.

Translation patterns are specified by tuples (CFG production, code, cost),
Value descriptors are the nonterminals of the grammar, e. g.

8 RegConst ::= addradd Reg   Const nop 0

11 RegConst ::= addradd RegConst Reg add Ri, Rj, Rk 1

Deeper patterns allow for more effective optimization:

Void ::= assign RegConst addradd Reg  Const store (Ri, c1),(Rj, c2) 1

Parsing for an ambiguous CFG:
application of a production is decided on the base of the production costs
rather than the accumulated subtree costs!

Technique „Graham, Glanville“
Generators: GG, GGSS

C-3.22
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Objectives:

Understand the parsing approach

In the lecture:

Explain

• how a parser performs a tree matching,

• that the parser decides on the base of production costs,

• that the grammar must be complete,

• that very many similar patterns are needed.

Suggested reading:

Kastens / Übersetzerbau, Section 7.4.3

Questions:

• In what sense must the grammar be complete? What happens if it is not?

• Why is it desirable that the grammar is ambiguous?

• Why is BURS optimization more effective?


