Data-Flow Analysis

Data-flow analysis (DFA) provides information about how the **execution of a program may manipulate its data**.

Many different problems can be formulated as data-flow problems, for example:

- Which assignments to variable ${\bf v}$ may influence a use of ${\bf v}$ at a certain program position?
- Is a variable v used on any path from a program position p to the exit node?
- The values of which expressions are available at program position p?

Data-flow problems are stated in terms of

- paths through the control-flow graph and
- properties of basic blocks.

Data-flow analysis provides information for global optimization.

Data-flow analysis does not know

- which input values are provided at run-time,
- which branches are taken at run-time.
- Its results are to be interpreted pessimistic

Data-Flow Equations

C-2.19

C-2.18

A data-flow problem is stated as a system of equations for a control-flow graph.

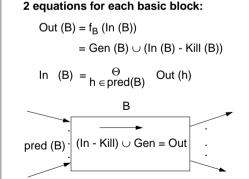
System of Equations for **forward problems** (propagate information along control-flow edges):

Example Reaching definitions:

A definiton d of a variable v reaches the begin of a block B if **there is a path** from d to B on which v is not assigned again.

In, Out, Gen, Kill represent analysis information: sets of statements,

sets of variables, sets of expressions depending on the analysis problem



In, Out variables of the system of equations for each block

Gen, Kill a pair of **constant sets** that characterize a block w.r.t. the DFA problem

 Θ meet operator; e. g. $\Theta = \cup$ for "reaching definitions", $\Theta = \cap$ for "available expressions"

Lecture Compilation Methods SS 2013 / Slide 218

Objectives:

Goals and ability of data-flow analysis

In the lecture:

- Examples for the use of DFA information are given.
- Examples for pessimistic information are given.

Suggested reading:

Kastens / Übersetzerbau, Section 8.2.4

Questions:

- What's wrong about optimistic information?
- Why can pessimistic information be useful?

Lecture Compilation Methods SS 2013 / Slide 219

Objectives:

A DFA problem is modeled by a system of equations

In the lecture:

- The equation pattern is explained.
- Equations are defined over sets.
- In this example: sets of assignment statements at certain program positions.
- The meet operator being the union operator is correlated to "there is a path" in the problem statement.
- Note: In this context a "definition of a variable" means an "assignment of a variable".

Suggested reading:

Kastens / Übersetzerbau, Section 8.2.4

Questions:

• Explain the meaning of In(B)= {d1: x=5, d4: x=7, d6: y=a+1} for a particular block B.

Specification of a DFA Problem

Specification of reaching definitions:

1. Description:

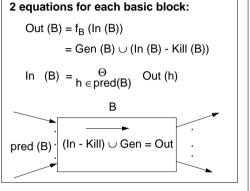
A definiton d of a variable v reaches the begin of a block B if **there is a path** from d to B on which v is not assigned again.

- 2. It is a forward problem.
- 3. The meet operator is union.
- 4. The **analysis information** in the sets are assignments at certain program positions.
- 5. Gen (B):

contains all definitions d: v = e; in B, such that v is not defined after d in B.

6. Kill (B):

if v is assigned in B, then Kill(B) contains all definitions d: v = e; of blocks different from B.



Variants of DFA Problems

forward problem:
 DFA information flows along the control flow
 In(B) is determined by Out(h) of the predecessor blocks

backward problem (see C-2.23): DFA information flows **against the control flow** Out(B) is determined by In(h) of the successor blocks

 union problem: problem description: "there is a path"; meet operator is Θ = ∪ solution: minimal sets that solve the equations

intersect problem: problem description: "for all paths" meet operator is $\Theta = \cap$ solution: maximal sets that solve the equations

• optimization information: sets of certain statements, of variables, of expressions.

Further classes of DFA problems over general lattices instead of sets are not considered here.

Lecture Compilation Methods SS 2013 / Slide 220

Objectives:

C-2.20

C-2.21

Specify a DFA problem systematically

In the lecture:

- The items that characterize a DFA problem are explained.
- The definition of Gen and Kill is explained.

Suggested reading:

Kastens / Übersetzerbau, Section 8.2.4

Questions:

• Why does this definition of Gen and Kill serves the purpose of the description in the first item?

Lecture Compilation Methods SS 2013 / Slide 221

Objectives:

Summary of the DFA variants

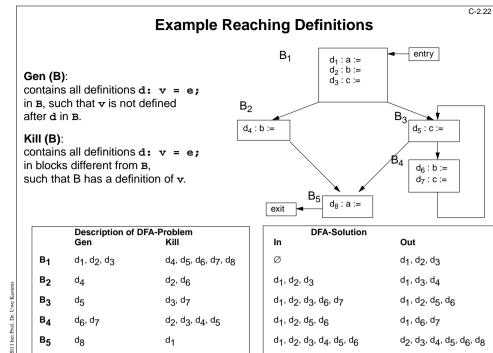
In the lecture:

• The variants of DFA problems are compared.

Suggested reading: Kastens / Übersetzerbau, Section 8.2.4

Questions:

• Explain the relation of the meet operator, the paths in the graph, and the maximal/minimal solutions.



Iterative Solution of Data-Flow Equations

Input: the CFG; the sets Gen(B) and Kill(B) for each basic block B Output: the sets In(B) and Out(B)

Algorithm:

repeat stable := true; for all $B \neq entry$ {*} do begin for all $V \in pred(B)$ do $In(B) := In(B) \Theta Out(V);$ oldout:= Out(B); $Out(B) := Gen(B) \cup (In(B)-Kill(B));$ stable:= stable and Out(B)=oldout end until stable

Initialization Union: empty sets for all B do begin $In(B):=\emptyset;$ Out(B):=Gen(B)end; Intersect: full sets for all B do begin

In(B) := U;Out(B):=Gen(B)∪ (U - Kill(B)) end;

C-2.22b

• The example for C-2.20 is explained.

Understand the meaning of DFA sets

Suggested reading:

Kastens / Übersetzerbau, Section 8.2.4

Questions:

Objectives:

In the lecture:

- · Check that the In and Out sets solve the equations for the CFG.
- How can you argue that the solution is minimal?
- Add some elements to the solution such that it still solves the equations. Explain what such non-minimal solutions mean.

Lecture Compilation Methods SS 2013 / Slide 222b

Objectives:

Understand the iterative DFA algorithm

In the lecture:

The topics on the slide are explained. Examples are given.

- · Initialization variants are explained.
- · The algorithm is explained.

Suggested reading:

Kastens / Übersetzerbau, Section 8.2.5, 8.2.6

Questions:

- How is the initialization related to the size of the solution for the two variants union and intersect?
- · Why does the algorithm terminate?

Complexity: O(n³) with n number of basic blocks $O(n^2)$ if $|pred(B)| \le k \le n$ for all B

Lecture Compilation Methods SS 2013 / Slide 222

Backward Problems

In (B)

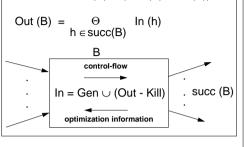
System of Equations for **backward problems** propagate information against control-flow edges:

2 equations for each basic block:

Example Live variables:

2. backward problem

 Description: Is variable v alive at a given point p in the program, i. e. is there a path from p to the exit where v is used but not defined before the use?



= Gen (B) \cup (Out (B) - Kill (B))

 $= f_B (Out (B))$

- 3. optimization information: sets of variables
- 4. meet operator: $\Theta = \cup$ union
- 5. Gen (B): variables that are used in B, but not defined before they are used there.
- 6. Kill (B): variables that are defined in B, but not used before they are defined there.

Important Data-Flow Problems

C-2.24

C-2.23

1. Reaching definitions: A definiton d of a variable v reaches the beginning of a block B if there is a path from d to B on which v is not assigned again.

DFA variant: forward; union; set of assignments

Transformations: use-def-chains, constant propagation, loop invariant computations

- Live variables: Is variable v alive at a given point p in the program, i. e. there is a path from p to the exit where v is used but not defined before the use.
 DFA variant: backward; union; set of variables
 Transformations: eliminate redundant assignments
- Available expressions: Is expression e computed on every path from the entry to a program position p and none of its variables is defined after the last computation before p. DFA variant: forward; intersect; set of expressions Transformations: eliminate redundant computations
- 4. Copy propagation: Is a copy assignment c: x = y redundant, i.e. on every path from c to a use of x there is no assignment to y?
 DFA variant: forward; intersect; set of copy assignments
 Transformations: remove copy assignments and rename use
- 5. Constant propagation: Has variable x at position p a known value, i.e. on every path from the entry to p the last definition of x is an assignment of the same known value. DFA variant: forward; combine function; vector of values Transformations: substitution of variable uses by constants

Lecture Compilation Methods SS 2013 / Slide 223

Objectives:

Symmetry of forward and backward schemes

In the lecture:

The topics on the slide are explained. Examples are given.

- The equation pattern is explained.
- The DFA problem "live variables" is explained.

Suggested reading:

Kastens / Übersetzerbau, Section 8.2.4

Questions:

• How do you determine the live variables within a basic block?

Lecture Compilation Methods SS 2013 / Slide 224

Objectives:

Recognize the DFA problem scheme

In the lecture:

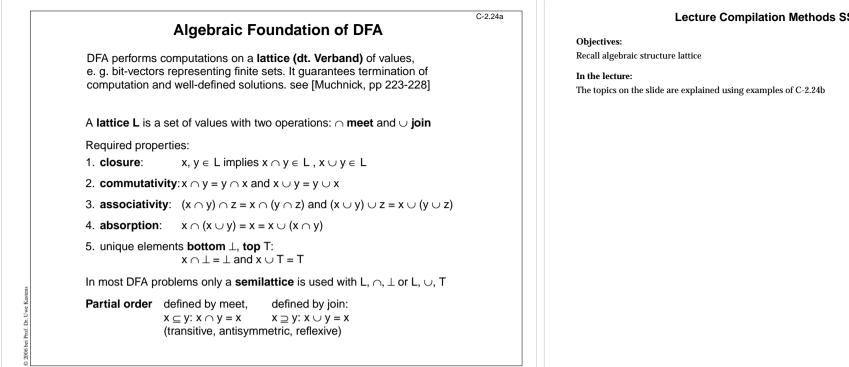
- The DFA problems and their purpose are explained.
- · The DFA classification is derived from the description.
- Examples are given.
- Problems like copy propagation oftem match to code that results from other optimizing transformations.

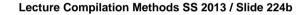
Suggested reading:

Kastens / Übersetzerbau, Section 8.3

Questions:

- Explain the classification of the DFA problems.
- Construct an example for each of the DFA problems.



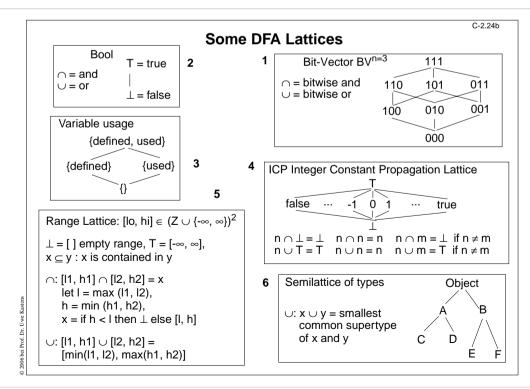


Objectives:

Most important DFA lattices

In the lecture:

- · The Examples are explained.
- · A new lattice can be constructed by elementwise composition of simpler lattices; e.g. a bit-vector lattice is an n-fold composition of the lattice Bool.
- A new lattice may be constructed for a particular DFA problem.



Lecture Compilation Methods SS 2013 / Slide 224a

C-2.24c	Lecture Compilation Methods SS 2013 / Slide 224c	
Monotone Functions Over Lattices	Objectives:	
The effects of program constructs on DFA information are described by functions over a suitable lattice,	DFA equations and monotone functions In the lecture:	
e. g. the function for basic block B ₃ on C-2.22:	Understand solution of DFA equations as fixed point of monotone functions.	
$f_3() = \in BV^8$		
Gen-Kill pair encoded as function		
f: L \rightarrow L is a monotone function over the lattice L if $\forall x, y \in L: x \subseteq y \Rightarrow f(x) \subseteq f(y)$		
Finite height of the lattice and monotonicity of the functions guarantee termination of the algorithms.		
Fixed points z of the function f, with $f(z) = z$, is a solution of the set of DFA equations.		
MOP: Meet over all paths solution is desired, i. e. the "best" with respect to L		
MFP: Maximum fixed point is computed by algorithms, if functions are monotone		
If the functions f are additionally distributive , then MFP = MOP . f: L \rightarrow L is a distributive function over the lattice L if $\forall x, y \in L$: f(x $\cap y$) = f(x) \cap f(y)		

C-2.26

Variants of DFA Algorithms

Heuristic improvement:

013 bei Prof. Dr.

Goal: propagate changes in the In and Out sets as fast as possible. Technique: visit CFG nodes in topological order in the outer for-loop {*}. Then the number of iterations of the outer repeat-loop is only determined by back edges in the CFG

Algorithm for backward problems:

Exchange In and Out sets symmetrically in the algorithm of C-2.22b. The nodes should be visited in topological order as if the directions of edges were flipped.

Hierarchical algorithms, interval analysis:

Regions of the CFG are considered nodes of a CFG on a higher level. That abstraction is recursively applied until a single root node is reached. The Gen, Kill sets are combined in upward direction; the In, Out sets are refined downward.

Lecture Compilation Methods SS 2013 / Slide 226

Objectives:

Overview on DFA algorithms

In the lecture:

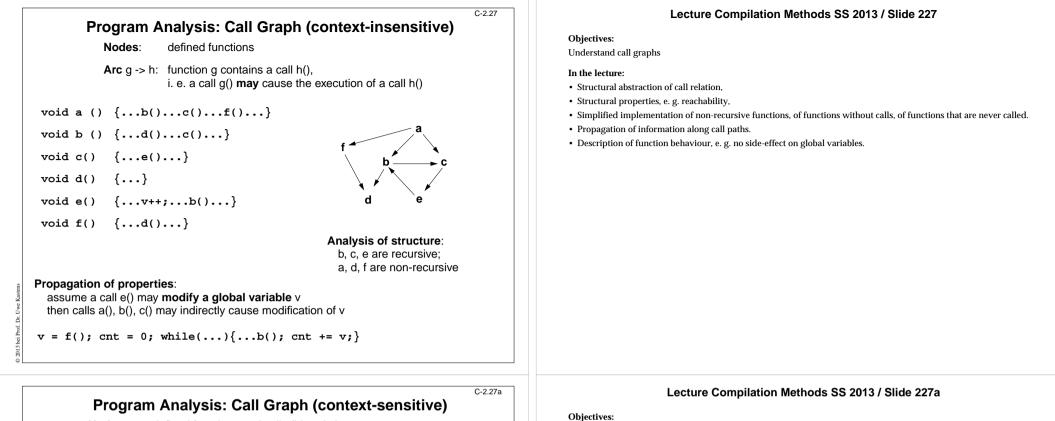
- The variants of the algorithm of C-2.25 are explained.
- The improvement is discussed.
- The idea of hierarchical approaches is explained.

Suggested reading:

Kastens / Übersetzerbau, Section 8.2.5, 8.2.6

Questions:

• For a backward problem the blocks could be considered in reversed topological order. Why is that not a good idea?

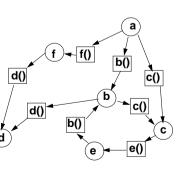


Nodes: defined functions and calls (bipartite)

- Arc g -> h: function g contains a call h(),i.e a call g() may cause the
 execution of a call h()
 or call g() leads to function g
- void a () {...b()...c()...f()...}
- void b () {...d()...c()...}
- void c() {...e()...}
- void d() {...}

Ľ.

- void e() {...v++;...b()...}
- void f() {...d()...}



Calls of the same function in different contexts are distinguished by **different nodes**, e.g. the call of c in a and in b.

Analysis can be more precise in that aspect.

In the lecture:

Understand context-sensitive call graphs

Distinguish context-insensitive and context-sensitive call graphs

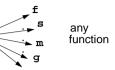
Calls Using Function Variables

Contents of function variables is assigned at run-time.

Static analysis does not know (precisely) which function is called.

Call graph has to assume that any function may be called.

void a()
 {...(*h)(0.3, 27)...}



Analysis for a better approximation of potential callees:

only those functions which

1. fit to the type of h

ă

- 2. are assigned somewhere in the program
- 3. can be derived from the **reaching definitions** at the call

void g (float x, int i) {...}
...k = m;... f(g); ...
void a()

- { void (*h)(float,int) = g;
 ...
- if(...) h = s;

void m (int j) {...}

...(*<mark>h</mark>)(0.3, 27)...

Analysis of Object-Oriented Programs

}

Aspects specific for object-oriented analysis:

- 1. hierarchy of classes and interfaces specifies a complex system of subtypes
- 2. hierarchy of classes and interfaces specifies inheritance and overriding relation for methods
- dynamic method binding for method calls v.m(...) the callee is determined at run-time good object-oriented style relies on that feature
- 4. many small methods are typical object-oriented style
- 5. **library use and reuse of modules** complete program contains many **unused classes and methods**

Static predictions for dynamically bound method calls are essential for most analyses

Lecture Compilation Methods SS 2013 / Slide 228

Objectives:

C-2.28

C-2.29

Approximate call targets

In the lecture:

- Explain the approximation techniques using the example.
- Relate the problem to dynamically bound method calls.

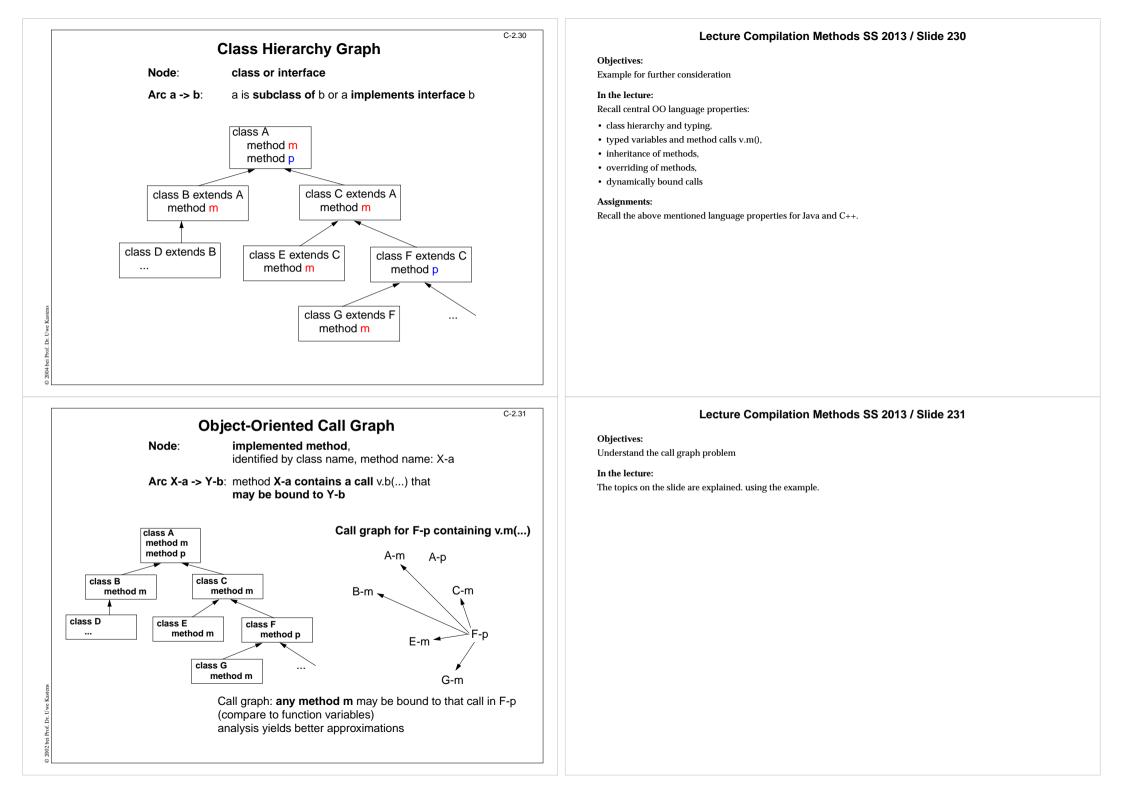
Lecture Compilation Methods SS 2013 / Slide 229

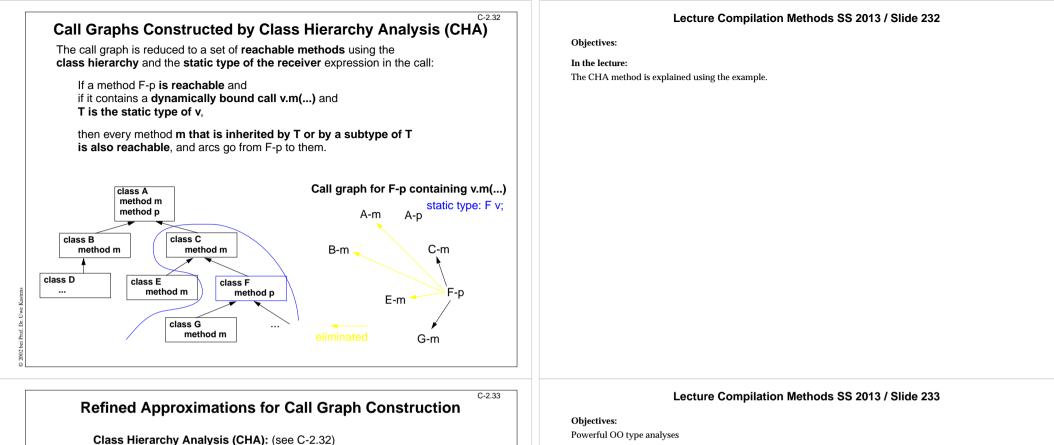
Objectives:

Overview on oo analysis issues

In the lecture:

- Role of class hierarchy for program analysis.
- Role of dynamic method binding for program analysis.





Rapid Type Analysis (RTA):

As CHA, but only methods of those classes C are considered which are instantiated (new C()) in a reachable method.

Reaching Type Analysis:

Approximations of run-time types is propagated through a graph: nodes represent variables, arcs represent copy assignments.

Declared Type Analysis: one node T represents all variables declared to have type T

Variable Type Analysis: one node V represents a single variable

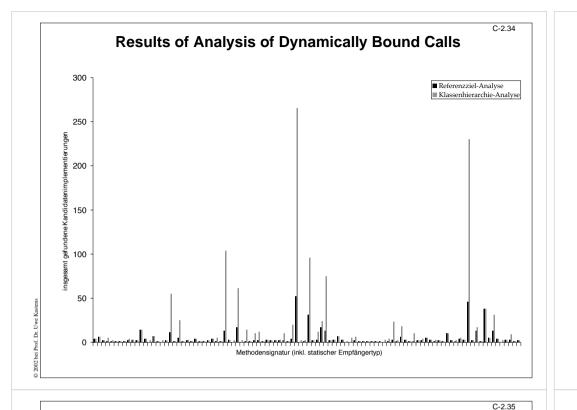
Points-to Analysis:

Ľ.

Information on object identities is propagated through the control-flow graph

In the lecture:

The methods are explained using small examples.



Modules of a Toolset for Program Analysis

analysis module	purpose	category	
ClassMemberVisibility	examines visibility levels of declarations		
MethodSizeStatistics	examines length of method implementations in bytecode operations and frequency of different bytecode operations		
ExternalEntities	histogram of references to program entities that reside outside a group of classes		
InheritanceBoundary	histogram of lowest superclass outside a group of classes		
SimpleSetterGetter	recognizes simple access methods with bytecode patterns		
MethodInspector	decomposes the raw bytecode array of a method implementation into a list of instruction objects	auxiliary analysis	
ControlFlow	builds a control flow graph for method implementations		
Dominator	constructs the dominator tree for a control flow graph		
Loop	uses the dominator tree to augment the control flow graph with loop and loop nesting information	fundamental analyses	
InstrDefUse	models operand accesses for each bytecode instruction		
LocalDefUse	builds intraprocedural def/use chains		
LifeSpan	analyzes lifeness of local variables and stack locations	1	
DefUseTypeInfo	infers type information for operand accesses	-	
Hierarchy	class hierarchy analysis based on a horizontal slice of the hierarchy		
PreciseCallGraph	builds call graph based on inferred type information, copes with incomplete class hierarchy	analysis of incomplete	
ParamEscape	transitively traces propagation of actual parameters in a method call (escape = leaves analyzed library)	programs	
ReadWriteFields	transitive liveness and access analysis for instance fields accessed by a method call		

Table 0-1. Analysis plug-ins in our framework

[Michael Thies: Combining Static Analysis of Java Libraries with Dynamic Optimization, Dissertation, Shaker Verlag, April 2001]

Lecture Compilation Methods SS 2013 / Slide 234

Objectives:

Effects on call identification

In the lecture:

The topics on the slide are explained. Examples are given.

- A pair of bars characterizes the number of method implementations, that may be bound to a set of calls having a particular type characteristics.
- · Compare the results for CHA and points-to analysis.

Lecture Compilation Methods SS 2013 / Slide 235

Objectives:

See analysis methods provided by a tool

In the lecture:

Some modules are related to methods presented in this lecture.

Questions:

Which modules implement a method that is presented in this lecture?