
©
 2

00
2

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Data-Flow Analysis
C-2.18

Data-flow analysis (DFA) provides information about
how the execution of a program may manipulate its data .

Many different problems can be formulated as data-flow problems , for example:

• Which assignments to variable v may influence a use of v at a certain program
position?

• Is a variable v used on any path from a program position p to the exit node?

• The values of which expressions are available at program position p?

Data-flow problems are stated in terms of

• paths through the control-flow graph and

• properties of basic blocks .

Data-flow analysis provides information for global optimization.

Data-flow analysis does not know

• which input values are provided at run-time,

• which branches are taken at run-time.

Its results are to be interpreted pessimistic

Lecture Compilation Methods SS 2013 / Slide 218

Objectives:

Goals and ability of data-flow analysis

In the lecture:

• Examples for the use of DFA information are given.

• Examples for pessimistic information are given.

Suggested reading:

Kastens / Übersetzerbau, Section 8.2.4

Questions:

• What’s wrong about optimistic information?

• Why can pessimistic information be useful?

©
 2

00
6

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Data-Flow Equations

A data-flow problem is stated as a system of equations for a control-flow graph.

System of Equations for forward problems (propagate information along control-flow edges):

In, Out, Gen, Kill represent
analysis information :

sets of statements,
sets of variables,
sets of expressions

depending on the analysis problem

In, Out variables of the system of equations for each block

Gen, Kill a pair of constant sets that characterize a block w.r.t. the DFA problem

Θ meet operator; e. g. Θ = ∪ for „reaching definitions“, Θ = ∩ for „available expressions“

C-2.19

In (B) = Out (h)

Out (B) = fB (In (B))

 Θ
h ∈pred(B)

pred (B) (In - Kill) ∪ Gen = Out

B

.

.

.

.

.

.

2 equations for each basic block:

= Gen (B) ∪ (In (B) - Kill (B))

Example Reaching definitions:
A definiton d of a variable v reaches
the begin of a block B if
there is a path from d to B on which
v is not assigned again.

Lecture Compilation Methods SS 2013 / Slide 219

Objectives:

A DFA problem is modeled by a system of equations

In the lecture:

• The equation pattern is explained.

• Equations are defined over sets.

• In this example: sets of assignment statements at certain program positions.

• The meet operator being the union operator is correlated to "there is a path" in the problem statement.

• Note: In this context a "definition of a variable" means an "assignment of a variable".

Suggested reading:

Kastens / Übersetzerbau, Section 8.2.4

Questions:

• Explain the meaning of In(B)= {d1: x=5, d4: x=7, d6: y=a+1} for a particular block B.

©
 2

01
1

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Specification of a DFA Problem

Specification of reaching definitions:

1. Description :
A definiton d of a variable v reaches the begin of a block B
if there is a path from d to B on which v is not assigned again.

2. It is a forward problem .

3. The meet operator is union.

4. The analysis information in the sets are
assignments at certain program positions.

5. Gen (B) :
contains all definitions d: v = e; in B,
such that v is not defined after d in B.

6. Kill (B) :
if v is assigned in B, then Kill(B)
contains all definitions d: v = e;
of blocks different from B.

C-2.20

In (B) = Out (h)

Out (B) = fB (In (B))

 Θ
h ∈pred(B)

pred (B) (In - Kill) ∪ Gen = Out

B

.

.

.

.

.

.

2 equations for each basic block:

= Gen (B) ∪ (In (B) - Kill (B))

Lecture Compilation Methods SS 2013 / Slide 220

Objectives:

Specify a DFA problem systematically

In the lecture:

• The items that characterize a DFA problem are explained.

• The definition of Gen and Kill is explained.

Suggested reading:

Kastens / Übersetzerbau, Section 8.2.4

Questions:

• Why does this definition of Gen and Kill serves the purpose of the description in the first item?

©
 2

00
4

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Variants of DFA Problems

• forward problem:
DFA information flows along the control flow
In(B) is determined by Out(h) of the predecessor blocks

backward problem (see C-2.23):
DFA information flows against the control flow
Out(B) is determined by In(h) of the successor blocks

• union problem:
problem description: „there is a path“;
meet operator is Θ = ∪
solution: minimal sets that solve the equations

intersect problem:
problem description: „for all paths“
meet operator is Θ = ∩
solution: maximal sets that solve the equations

• optimization information : sets of certain statements, of variables, of expressions.

Further classes of DFA problems over general lattices instead of sets are not considered here.

C-2.21

Lecture Compilation Methods SS 2013 / Slide 221

Objectives:

Summary of the DFA variants

In the lecture:

• The variants of DFA problems are compared.

Suggested reading:

Kastens / Übersetzerbau, Section 8.2.4

Questions:

• Explain the relation of the meet operator, the paths in the graph, and the maximal/minimal solutions.

©
 2

01
1

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Example Reaching Definitions

Gen (B) :
contains all definitions d: v = e;
in B, such that v is not defined
after d in B.

Kill (B) :
contains all definitions d: v = e;
in blocks different from B,
such that B has a definition of v.

C-2.22

d1 : a :=
d2 : b :=
d3 : c :=

d4 : b := d5 : c :=

d6 : b :=
d7 : c :=

d8 : a :=

B1

B2
B3

B4

B5

entry

exit

Description of DFA-Problem DFA-Solution
Gen Kill In Out

B1 d1, d2, d3 d4, d5, d6, d7, d8 ∅ d1, d2, d3

B2 d4 d2, d6 d1, d2, d3 d1, d3, d4

B3 d5 d3, d7 d1, d2, d3, d6, d7 d1, d2, d5, d6

B4 d6, d7 d2, d3, d4, d5 d1, d2, d5, d6 d1, d6, d7

B5 d8 d1 d1, d2, d3, d4, d5, d6 d2, d3, d4, d5, d6, d8

Lecture Compilation Methods SS 2013 / Slide 222

Objectives:

Understand the meaning of DFA sets

In the lecture:

• The example for C-2.20 is explained.

Suggested reading:

Kastens / Übersetzerbau, Section 8.2.4

Questions:

• Check that the In and Out sets solve the equations for the CFG.

• How can you argue that the solution is minimal?

• Add some elements to the solution such that it still solves the equations. Explain what such non-minimal solutions
mean.

©
 2

01
3

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Iterative Solution of Data-Flow Equations

Input: the CFG; the sets Gen(B) and Kill(B) for each basic block B
Output: the sets In(B) and Out(B)

Complexity: O(n3) with n number of basic blocks
O(n2) if pred (B) ≤ k << n for all B

Algorithm:
repeat

stable := true;

for all B ≠ entry {*}

do begin

for all V ∈ pred(B) do

In(B):= In(B) Θ Out(V);

oldout:= Out(B);

Out(B):= Gen(B) ∪ (In(B)-Kill(B));

stable:= stable and Out(B)=oldout

end

until stable

Initialization
Union: empty sets
for all B do
begin

In(B):= ∅;
Out(B):=Gen(B)

end;

Intersect: full sets
for all B do
begin

In(B) := U;
Out(B):=

Gen(B) ∪
(U - Kill(B))

end;

C-2.22b

Lecture Compilation Methods SS 2013 / Slide 222b

Objectives:

Understand the iterative DFA algorithm

In the lecture:

The topics on the slide are explained. Examples are given.

• Initialization variants are explained.

• The algorithm is explained.

Suggested reading:

Kastens / Übersetzerbau, Section 8.2.5, 8.2.6

Questions:

• How is the initialization related to the size of the solution for the two variants union and intersect?

• Why does the algorithm terminate?

©
 2

00
6

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Backward Problems

System of Equations for backward problems
propagate information against control-flow edges:

2 equations for each basic block:

Example Live variables:

1. Description: Is variable v alive at a given
point p in the program, i. e. is there a path
from p to the exit where v is used but
not defined before the use?

2. backward problem

3. optimization information: sets of variables

4. meet operator: Θ = ∪ union

5. Gen (B): variables that are used in B, but not defined before they are used there.

6. Kill (B): variables that are defined in B, but not used before they are defined there.

C-2.23

Out (B) = In (h)

In (B) = fB (Out (B))

 Θ
h ∈succ(B)

succ (B)In = Gen ∪ (Out - Kill)

B

.

.

.

.

.

.

control-flow

optimization information

= Gen (B) ∪ (Out (B) - Kill (B))

Lecture Compilation Methods SS 2013 / Slide 223

Objectives:

Symmetry of forward and backward schemes

In the lecture:

The topics on the slide are explained. Examples are given.

• The equation pattern is explained.

• The DFA problem "live variables" is explained.

Suggested reading:

Kastens / Übersetzerbau, Section 8.2.4

Questions:

• How do you determine the live variables within a basic block?

©
 2

00
4

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Important Data-Flow Problems

1. Reaching definitions: A definiton d of a variable v reaches the beginning of a block B if
there is a path from d to B on which v is not assigned again.
DFA variant: forward; union; set of assignments
Transformations: use-def-chains, constant propagation, loop invariant computations

2. Live variables: Is variable v alive at a given point p in the program, i. e. there is a path from
p to the exit where v is used but not defined before the use.
DFA variant: backward; union; set of variables
Transformations: eliminate redundant assignments

3. Available expressions: Is expression e computed on every path from the entry to a
program position p and none of its variables is defined after the last computation before p.
DFA variant: forward; intersect; set of expressions
Transformations: eliminate redundant computations

4. Copy propagation: Is a copy assignment c: x = y redundant, i.e. on every path from c to
a use of x there is no assignment to y?
DFA variant: forward; intersect; set of copy assignments
Transformations: remove copy assignments and rename use

5. Constant propagation: Has variable x at position p a known value, i.e. on every path from
the entry to p the last definition of x is an assignment of the same known value.
DFA variant: forward; combine function; vector of values
Transformations: substitution of variable uses by constants

C-2.24

Lecture Compilation Methods SS 2013 / Slide 224

Objectives:

Recognize the DFA problem scheme

In the lecture:

• The DFA problems and their purpose are explained.

• The DFA classification is derived from the description.

• Examples are given.

• Problems like copy propagation oftem match to code that results from other optimizing transformations.

Suggested reading:

Kastens / Übersetzerbau, Section 8.3

Questions:

• Explain the classification of the DFA problems.

• Construct an example for each of the DFA problems.

©
 2

00
6

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Algebraic Foundation of DFA
C-2.24a

DFA performs computations on a lattice (dt. Verband) of values,
e. g. bit-vectors representing finite sets. It guarantees termination of
computation and well-defined solutions. see [Muchnick, pp 223-228]

A lattice L is a set of values with two operations: ∩ meet and ∪ join

Required properties:

1. closure : x, y ∈ L implies x ∩ y ∈ L , x ∪ y ∈ L

2. commutativity :x ∩ y = y ∩ x and x ∪ y = y ∪ x

3. associativity : (x ∩ y) ∩ z = x ∩ (y ∩ z) and (x ∪ y) ∪ z = x ∪ (y ∪ z)

4. absorption : x ∩ (x ∪ y) = x = x ∪ (x ∩ y)

5. unique elements bottom ⊥, top T:
x ∩ ⊥ = ⊥ and x ∪ T = T

In most DFA problems only a semilattice is used with L, ∩, ⊥ or L, ∪, T

Partial order defined by meet, defined by join:
x ⊆ y: x ∩ y = x x ⊇ y: x ∪ y = x
(transitive, antisymmetric, reflexive)

Lecture Compilation Methods SS 2013 / Slide 224a

Objectives:

Recall algebraic structure lattice

In the lecture:

The topics on the slide are explained using examples of C-2.24b

©
 2

00
6

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Some DFA Lattices
C-2.24b

Bool

∩ = and
∪ = or

T = true

⊥ = false

Bit-Vector BVn=3

∩ = bitwise and
∪ = bitwise or

111

110 101 011

100 010 001

000
Variable usage

{defined, used}

{defined} {used}

{}

ICP Integer Constant Propagation Lattice
T

⊥

0 1-1false true... ...

n ∩ ⊥ = ⊥ n ∩ n = n n ∩ m = ⊥ if n ≠ m
n ∪ T = T n ∪ n = n n ∪ m = T if n ≠ m

Range Lattice: [lo, hi] ∈ (Z ∪ {-∞, ∞})2

⊥ = [] empty range, T = [-∞, ∞],
x ⊆ y : x is contained in y

∩: [l1, h1] ∩ [l2, h2] = x
let l = max (l1, l2),
h = min (h1, h2),
x = if h < l then ⊥ else [l, h]

∪: [l1, h1] ∪ [l2, h2] =
[min(l1, l2), max(h1, h2)]

12

3 4

5

Semilattice of types

∪: x ∪ y = smallest
common supertype

Object

of x and y

A B

C D
E F

6

Lecture Compilation Methods SS 2013 / Slide 224b

Objectives:

Most important DFA lattices

In the lecture:

• The Examples are explained.

• A new lattice can be constructed by elementwise composition of simpler lattices; e.g. a bit-vector lattice is an n-fold
composition of the lattice Bool.

• A new lattice may be constructed for a particular DFA problem.

©
 2

01
1

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Monotone Functions Over Lattices
C-2.24c

The effects of program constructs on DFA information are described by
functions over a suitable lattice,

e. g. the function for basic block B3 on C-2.22:

f3(<x1 x2 x3 x4 x5 x6 x7 x8>) = <x1 x2 0 x4 1 x6 0 x8> ∈ BV8

Gen-Kill pair encoded as function

f: L → L is a monotone function over the lattice L if
∀ x, y ∈ L: x ⊆ y ⇒ f(x) ⊆ f(y)

Finite height of the lattice and monotonicity of the functions
guarantee termination of the algorithms.

Fixed points z of the function f, with f(z) = z, is a solution of the set of DFA equations.

MOP: Meet over all paths solution is desired, i. e. the „best“ with respect to L

MFP: Maximum fixed point is computed by algorithms, if functions are monotone

If the functions f are additionally distributive , then MFP = MOP.
f: L → L is a distributive function over the lattice L if

∀ x, y ∈ L: f(x ∩ y) = f(x) ∩ f(y)

Lecture Compilation Methods SS 2013 / Slide 224c

Objectives:

DFA equations and monotone functions

In the lecture:

Understand solution of DFA equations as fixed point of monotone functions.

©
 2

01
3

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Variants of DFA Algorithms

Heuristic improvement:

Goal: propagate changes in the In and Out sets as fast as possible.
Technique: visit CFG nodes in topological order in the outer for-loop {*}.
Then the number of iterations of the outer repeat-loop is only determined
by back edges in the CFG

Algorithm for backward problems:

Exchange In and Out sets symmetrically in the algorithm of C-2.22b.
The nodes should be visited in topological order as if the directions of edges were flipped.

Hierarchical algorithms, interval analysis:

Regions of the CFG are considered nodes of a CFG on a higher level.
That abstraction is recursively applied until a single root node is reached.
The Gen, Kill sets are combined in upward direction;
the In, Out sets are refined downward.

C-2.26

Lecture Compilation Methods SS 2013 / Slide 226

Objectives:

Overview on DFA algorithms

In the lecture:

• The variants of the algorithm of C-2.25 are explained.

• The improvement is discussed.

• The idea of hierarchical approaches is explained.

Suggested reading:

Kastens / Übersetzerbau, Section 8.2.5, 8.2.6

Questions:

• For a backward problem the blocks could be considered in reversed topological order. Why is that not a good idea?

©
 2

01
3

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Program Analysis: Call Graph (context-insensitive)
C-2.27

Nodes : defined functions

Arc g -> h: function g contains a call h(),
i. e. a call g() may cause the execution of a call h()

a

b c

d e

f

void a () {...b()...c()...f()...}

void b () {...d()...c()...}

void c() {...e()...}

void d() {...}

void e() {...v++;...b()...}

void f() {...d()...}

Analysis of structure :
b, c, e are recursive;
a, d, f are non-recursive

Propagation of properties :
assume a call e() may modify a global variable v
then calls a(), b(), c() may indirectly cause modification of v

v = f(); cnt = 0; while(...){...b(); cnt += v;}

Lecture Compilation Methods SS 2013 / Slide 227

Objectives:

Understand call graphs

In the lecture:

• Structural abstraction of call relation,

• Structural properties, e. g. reachability,

• Simplified implementation of non-recursive functions, of functions without calls, of functions that are never called.

• Propagation of information along call paths.

• Description of function behaviour, e. g. no side-effect on global variables.

©
 2

01
3

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Program Analysis: Call Graph (context-sensitive)
C-2.27a

Nodes : defined functions and calls (bipartite)

Arc g -> h: function g contains a call h(),i.e a call g() may cause the
execution of a call h()
or call g() leads to function g

a

c
d

e

f
b()

c()

f()

d() c()

e()

b()

d()

b

void a () {...b()...c()...f()...}

void b () {...d()...c()...}

void c() {...e()...}

void d() {...}

void e() {...v++;...b()...}

void f() {...d()...}

Calls of the same function in different contexts are distinguished by
different nodes , e.g. the call of c in a and in b.

Analysis can be more precise in that aspect.

Lecture Compilation Methods SS 2013 / Slide 227a

Objectives:

Understand context-sensitive call graphs

In the lecture:

Distinguish context-insensitive and context-sensitive call graphs

©
 2

00
6

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Calls Using Function Variables
C-2.28

Contents of function variables is assigned at run-time .

Static analysis does not know (precisely) which function is called.

Call graph has to assume that any function may be called .

void a()
{...(* h)(0.3, 27)...}

a
.
.
.

function

f
s

m
g

any

Analysis for a better approximation
of potential callees:

only those functions which

1. fit to the type of h

2. are assigned somewhere in the
program

3. can be derived from the
reaching definitions at the call

void m (int j) {...}

void g (float x, int i) {...}

...k = m;... f(g); ...

void a()
{ void (* h)(float,int) = g ;

...
if(...) h = s ;

...(* h)(0.3, 27)...
}

Lecture Compilation Methods SS 2013 / Slide 228

Objectives:

Approximate call targets

In the lecture:

• Explain the approximation techniques using the example.

• Relate the problem to dynamically bound method calls.

©
 2

00
4

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Analysis of Object-Oriented Programs
C-2.29

Aspects specific for object-oriented analysis:

1. hierarchy of classes and interfaces
specifies a complex system of subtypes

2. hierarchy of classes and interfaces
specifies inheritance and overriding relation for methods

3. dynamic method binding
for method calls v.m(...) the callee is determined at run-time
good object-oriented style relies on that feature

4. many small methods are typical object-oriented style

5. library use and reuse of modules
complete program contains many unused classes and methods

Static predictions for dynamically bound method calls
are essential for most analyses

Lecture Compilation Methods SS 2013 / Slide 229

Objectives:

Overview on oo analysis issues

In the lecture:

• Role of class hierarchy for program analysis.

• Role of dynamic method binding for program analysis.

©
 2

00
4

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Class Hierarchy Graph
C-2.30

Node : class or interface

Arc a -> b : a is subclass of b or a implements interface b

class A
method m
method p

class C extends A
method m

class B extends A
method m

class D extends B
...

class E extends C
method m

class F extends C
method p

class G extends F
method m

...

Lecture Compilation Methods SS 2013 / Slide 230

Objectives:

Example for further consideration

In the lecture:

Recall central OO language properties:

• class hierarchy and typing,

• typed variables and method calls v.m(),

• inheritance of methods,

• overriding of methods,

• dynamically bound calls

Assignments:

Recall the above mentioned language properties for Java and C++.

©
 2

00
2

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Object-Oriented Call Graph
C-2.31

Node : implemented method ,
identified by class name, method name: X-a

Arc X-a -> Y-b : method X-a contains a call v.b(...) that
may be bound to Y-b

class A
method m
method p

class C
method m

class B
method m

class D
...

class E
method m

class F
method p

class G
method m

...

A-m A-p

B-m C-m

E-m
F-p

G-m

Call graph for F-p containing v.m(...)

Call graph: any method m may be bound to that call in F-p
(compare to function variables)
analysis yields better approximations

Lecture Compilation Methods SS 2013 / Slide 231

Objectives:

Understand the call graph problem

In the lecture:

The topics on the slide are explained. using the example.

©
 2

00
2

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Call Graphs Constructed by Class Hierarchy Analysis (CHA)
C-2.32

The call graph is reduced to a set of reachable methods using the
class hierarchy and the static type of the receiver expression in the call:

If a method F-p is reachable and
if it contains a dynamically bound call v.m(...) and
T is the static type of v ,

then every method m that is inherited by T or by a subtype of T
is also reachable , and arcs go from F-p to them.

class A
method m
method p

class C
method m

class B
method m

class D
...

class E
method m

class F
method p

class G
method m

...

A-m A-p

B-m C-m

E-m
F-p

G-m

Call graph for F-p containing v.m(...)
static type: F v;

eliminated

Lecture Compilation Methods SS 2013 / Slide 232

Objectives:

In the lecture:

The CHA method is explained using the example.

©
 2

00
4

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Refined Approximations for Call Graph Construction
C-2.33

Class Hierarchy Analysis (CHA): (see C-2.32)

Rapid Type Analysis (RTA):

As CHA, but only methods of those classes C are considered
which are instantiated (new C()) in a reachable method.

Reaching Type Analysis:

Approximations of run-time types is propagated through a graph:
nodes represent variables, arcs represent copy assignments.

Declared Type Analysis :
one node T represents all variables declared to have type T

Variable Type Analysis :
one node V represents a single variable

Points-to Analysis:

Information on object identities is
propagated through the control-flow graph

Lecture Compilation Methods SS 2013 / Slide 233

Objectives:

Powerful OO type analyses

In the lecture:

The methods are explained using small examples.

©
 2

00
2

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Results of Analysis of Dynamically Bound Calls
C-2.34

0

50

100

150

200

250

300

Methodensignatur (inkl. statischer Empf�ngertyp)

in
sg

es
am

tg
ef

u
n

d
en

e
K

an
d

id
at

en
im

p
le

m
en

ti
er

u
n

ge
n

Referenzziel-Analyse
Klassenhierarchie-Analyse

Lecture Compilation Methods SS 2013 / Slide 234

Objectives:

Effects on call identification

In the lecture:

The topics on the slide are explained. Examples are given.

• A pair of bars characterizes the number of method implementations, that may be bound to a set of calls having a
particular type characteristics.

• Compare the results for CHA and points-to analysis.

©
 2

00
2

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Modules of a Toolset for Program Analysis
C-2.35

. .

analysis module purpose category

ClassMemberVisibility examines visibility levels of declarations

visualization

MethodSizeStatistics examines length of method implementations in bytecode operations and
frequency of different bytecode operations

ExternalEntities histogram of references to program entities that reside outside a group of
classes

InheritanceBoundary histogram of lowest superclass outside a group of classes

SimpleSetterGetter recognizes simple access methods with bytecode patterns

MethodInspector decomposes the raw bytecode array of a method implementation into a list
of instruction objects auxiliary analysis

ControlFlow builds a control flow graph for method implementations

fundamental analyses

Dominator constructs the dominator tree for a control flow graph

Loop uses the dominator tree to augment the control flow graph with loop and
loop nesting information

InstrDefUse models operand accesses for each bytecode instruction

LocalDefUse builds intraprocedural def/use chains

LifeSpan analyzes lifeness of local variables and stack locations

DefUseTypeInfo infers type information for operand accesses

analysis of
incomplete
programs

Hierarchy class hierarchy analysis based on a horizontal slice of the hierarchy

PreciseCallGraph builds call graph based on inferred type information, copes with
incomplete class hierarchy

ParamEscape transitively traces propagation of actual parameters in a method call
(escape = leaves analyzed library)

ReadWriteFields transitive liveness and access analysis for instance fields accessed by a
method call

Table 0-1. Analysis plug-ins in our framework

[Michael Thies: Combining Static Analysis of Java Libraries with Dynamic Optimization, Dissertation,
Shaker Verlag, April 2001]

Lecture Compilation Methods SS 2013 / Slide 235

Objectives:

See analysis methods provided by a tool

In the lecture:

Some modules are related to methods presented in this lecture.

Questions:

Which modules implement a method that is presented in this lecture?

