Data-Flow Analysis

Data-flow analysis (DFA) provides information about how the execution of a program may manipulate its data.

Many different problems can be formulated as data-flow problems, for example:

- Which assignments to variable \mathbf{v} may influence a use of v at a certain program position?
- Is a variable \mathbf{v} used on any path from a program position \mathbf{p} to the exit node?
- The values of which expressions are available at program position \mathbf{p} ?

Data-flow problems are stated in terms of

- paths through the control-flow graph and
- properties of basic blocks.

Data-flow analysis provides information for global optimization.

Data-flow analysis does not know

- which input values are provided at run-time,
- which branches are taken at run-time.

Its results are to be interpreted pessimistic

Lecture Compilation Methods SS 2013 / Slide 218

Objectives:
Goals and ability of data-flow analysis
In the lecture:

- Examples for the use of DFA information are given.
- Examples for pessimistic information are given.

Suggested reading:
Kastens / Übersetzerbau, Section 8.2.4

Questions:

- What's wrong about optimistic information?
- Why can pessimistic information be useful?

Data-Flow Equations

A data-flow problem is stated as a system of equations for a control-flow graph.
System of Equations for forward problems (propagate information along control-flow edges):

Example Reaching definitions:

A definiton d of a variable v reaches the begin of a block \mathbf{B} if
there is a path from d to B on which v is not assigned again.

In, Out, Gen, Kill represent analysis information:

sets of statements,
sets of variables,
sets of expressions
depending on the analysis problem

2 equations for each basic block:

$$
\begin{aligned}
\text { Out }(B) & =f_{B}(\ln (B)) \\
& =\operatorname{Gen}(B) \cup(\ln (B)-\text { Kill }(B))
\end{aligned}
$$

$\ln \quad(B)=\underset{h \in P r}{\Theta}$
$\stackrel{\Theta}{\stackrel{-}{r e d}(B)}$
Out (h)

In, Out variables of the system of equations for each block
Gen, Kill a pair of constant sets that characterize a block w.r.t. the DFA problem Θ meet operator; e. g. $\Theta=\cup$ for „reaching definitions", $\Theta=\cap$ for „available expressions"

Lecture Compilation Methods SS 2013 / Slide 219

Objectives:
A DFA problem is modeled by a system of equations
In the lecture:

- The equation pattern is explained.
- Equations are defined over sets.
- In this example: sets of assignment statements at certain program positions.
- The meet operator being the union operator is correlated to "there is a path" in the problem statement.
- Note: In this context a "definition of a variable" means an "assignment of a variable".

Suggested reading:
Kastens / Übersetzerbau, Section 8.2.4
Questions:

- Explain the meaning of $\operatorname{In}(B)=\{d 1: x=5, d 4: x=7, d 6: y=a+1\}$ for a particular block B.

Specification of a DFA Problem

Specification of reaching definitions:

1. Description:

A definiton d of a variable v reaches the begin of a block B if there is a path from \mathbf{d} to \mathbf{B} on which \mathbf{v} is not assigned again.
2. It is a forward problem.
3. The meet operator is union.
4. The analysis information in the sets are assignments at certain program positions.
5. Gen (B):
contains all definitions d : $\mathrm{v}=\mathrm{e}$; in B , such that \mathbf{v} is not defined after \mathbf{d} in \mathbf{B}.
6. Kill (B):
if v is assigned in B , then $\operatorname{Kill}(\mathrm{B})$ contains all definitions \mathbf{d} : $\mathbf{v}=\mathbf{e}$; of blocks different from B.

2 equations for each basic block:

$$
\begin{aligned}
\text { Out }(B) & =f_{B}(\ln (B)) \\
& =\operatorname{Gen}(B) \cup(\ln (B)-\text { Kill }(B))
\end{aligned}
$$

In $\quad(B)=\underset{h \in \underset{\operatorname{pred}(B)}{\Theta}}{ }$ Out (h)

Lecture Compilation Methods SS 2013 / Slide 220

Objectives:

Specify a DFA problem systematically
In the lecture:

- The items that characterize a DFA problem are explained.
- The definition of Gen and Kill is explained.

Suggested reading:
Kastens / Übersetzerbau, Section 8.2.4

Questions:

- Why does this definition of Gen and Kill serves the purpose of the description in the first item?

Variants of DFA Problems

- forward problem:

DFA information flows along the control flow
$\ln (B)$ is determined by Out (h) of the predecessor blocks
backward problem (see C-2.23):
DFA information flows against the control flow
Out(B) is determined by $\ln (\mathrm{h})$ of the successor blocks

- union problem:
problem description: „there is a path";
meet operator is $\Theta=\cup$
solution: minimal sets that solve the equations
intersect problem:
problem description: „for all paths"
meet operator is $\Theta=\cap$
solution: maximal sets that solve the equations
- optimization information: sets of certain statements, of variables, of expressions.

Further classes of DFA problems over general lattices instead of sets are not considered here.

Lecture Compilation Methods SS 2013 / Slide 221

Objectives:
Summary of the DFA variants
In the lecture:

- The variants of DFA problems are compared.

Suggested reading:
Kastens / Übersetzerbau, Section 8.2.4
Questions:

- Explain the relation of the meet operator, the paths in the graph, and the maximal/minimal solutions.

Example Reaching Definitions

Gen (B):

contains all definitions \mathbf{d} : $\mathbf{v}=\mathbf{e}$; in \mathbf{B}, such that \mathbf{v} is not defined after din B.

Kill (B):
contains all definitions \mathbf{d} : $\mathbf{v}=\mathbf{e}$; in blocks different from \mathbf{B}, such that B has a definition of v.

Lecture Compilation Methods SS 2013 / Slide 222

Objectives:
Understand the meaning of DFA sets
In the lecture:

- The example for C-2.20 is explained.

Suggested reading:
Kastens / Übersetzerbau, Section 8.2.4

Questions:

- Check that the In and Out sets solve the equations for the CFG.
- How can you argue that the solution is minimal?
- Add some elements to the solution such that it still solves the equations. Explain what such non-minimal solutions mean.

Iterative Solution of Data-Flow Equations

Input: the CFG; the sets Gen(B) and Kill(B) for each basic block B
Output: the sets $\ln (B)$ and $\operatorname{Out}(B)$

```
Algorithm:
    repeat
        stable := true;
        for all B \not= entry {*}
        do begin
            for all V \in pred(B) do
            In(B):= In(B) \Theta Out(V);
            oldout:= Out(B);
            Out(B):= Gen(B) \cup (In(B)-Kill(B));
            stable:= stable and Out(B)=oldout
        end
    until stable
```

```
Initialization
Union: empty sets
for all B do
begin
    In (B) \(:=\varnothing\);
    Out (B) : =Gen (B)
end;
Intersect: full sets
for all B do
begin
    In (B) : = U;
    Out (B) :=
        Gen (B) \(\cup\)
                            (U - Kill(B))
end;
```

Complexity: $\mathrm{O}\left(\mathrm{n}^{3}\right)$ with n number of basic blocks $\mathrm{O}\left(\mathrm{n}^{2}\right)$ if $|\operatorname{pred}(\mathrm{B})| \leq \mathbf{k} \ll \mathbf{n}$ for all B

Lecture Compilation Methods SS 2013 / Slide 222b

Objectives:
Understand the iterative DFA algorithm
In the lecture:
The topics on the slide are explained. Examples are given.

- Initialization variants are explained.
- The algorithm is explained.

Suggested reading:
Kastens / Übersetzerbau, Section 8.2.5, 8.2.6

Questions:

- How is the initialization related to the size of the solution for the two variants union and intersect?
- Why does the algorithm terminate?

Backward Problems

System of Equations for backward problems
propagate information against control-flow edges:
2 equations for each basic block:

Example Live variables:

1. Description: Is variable v alive at a given point p in the program, i. e. is there a path from p to the exit where v is used but not defined before the use?
2. backward problem
3. optimization information: sets of variables

$$
\begin{aligned}
\ln (B) & =f_{B}(\text { Out }(B)) \\
& =\text { Gen }(B) \cup(\text { Out }(B)-\text { Kill }(B))
\end{aligned}
$$

Out $(B)=\quad \Theta \quad \ln (h)$

4. meet operator: $\Theta=\cup$ union
5. Gen (B) : variables that are used in B, but not defined before they are used there.
6. Kill (B): variables that are defined in B, but not used before they are defined there.

Lecture Compilation Methods SS 2013 / Slide 223

Objectives:
Symmetry of forward and backward schemes
In the lecture:
The topics on the slide are explained. Examples are given.

- The equation pattern is explained.
- The DFA problem "live variables" is explained.

Suggested reading:
Kastens / Übersetzerbau, Section 8.2.4

Questions:

- How do you determine the live variables within a basic block?

Important Data-Flow Problems

1. Reaching definitions: A definiton d of a variable v reaches the beginning of a block B if there is a path from \mathbf{d} to \mathbf{B} on which v is not assigned again.
DFA variant: forward; union; set of assignments
Transformations: use-def-chains, constant propagation, loop invariant computations
2. Live variables: Is variable \mathbf{v} alive at a given point \mathbf{p} in the program, i. e. there is a path from p to the exit where v is used but not defined before the use.
DFA variant: backward; union; set of variables
Transformations: eliminate redundant assignments
3. Available expressions: Is expression e computed on every path from the entry to a program position p and none of its variables is defined after the last computation before \mathbf{p}.
DFA variant: forward; intersect; set of expressions
Transformations: eliminate redundant computations
4. Copy propagation: Is a copy assignment $\mathbf{c}: \mathbf{x}=\mathbf{y}$ redundant, i.e. on every path from \mathbf{c} to a use of \mathbf{x} there is no assignment to \mathbf{y} ?
DFA variant: forward; intersect; set of copy assignments
Transformations: remove copy assignments and rename use
5. Constant propagation: Has variable \mathbf{x} at position p a known value, i.e. on every path from the entry to p the last definition of \mathbf{x} is an assignment of the same known value.
DFA variant: forward; combine function; vector of values
Transformations: substitution of variable uses by constants

Lecture Compilation Methods SS 2013 / Slide 224

Objectives:
Recognize the DFA problem scheme
In the lecture:

- The DFA problems and their purpose are explained.
- The DFA classification is derived from the description.
- Examples are given.
- Problems like copy propagation oftem match to code that results from other optimizing transformations.

Suggested reading:
Kastens / Übersetzerbau, Section 8.3
Questions:

- Explain the classification of the DFA problems.
- Construct an example for each of the DFA problems.

Algebraic Foundation of DFA

DFA performs computations on a lattice (dt. Verband) of values, e. g. bit-vectors representing finite sets. It guarantees termination of computation and well-defined solutions. see [Muchnick, pp 223-228]

A lattice L is a set of values with two operations: \cap meet and \cup join Required properties:

1. closure: $\quad x, y \in L$ implies $x \cap y \in L, x \cup y \in L$
2. commutativity: $x \cap y=y \cap x$ and $x \cup y=y \cup x$
3. associativity: $(x \cap y) \cap z=x \cap(y \cap z)$ and $(x \cup y) \cup z=x \cup(y \cup z)$
4. absorption: $\quad x \cap(x \cup y)=x=x \cup(x \cap y)$
5. unique elements bottom \perp, top T :

$$
x \cap \perp=\perp \text { and } x \cup T=T
$$

In most DFA problems only a semilattice is used with L, \cap, \perp or L, \cup, T
Partial order defined by meet, defined by join:
$x \subseteq y: x \cap y=x \quad x \supseteq y: x \cup y=x$
(transitive, antisymmetric, reflexive)

Lecture Compilation Methods SS 2013 / Slide 224a

Objectives:
Recall algebraic structure lattice
In the lecture:
The topics on the slide are explained using examples of C-2.24b

Some DFA Lattices

Bool	
$\cap=$ and $\cup=$ or	2
	$\perp=$ false

Variable usage \{defined, used $\}$		
\{defined $\}$	$\{$ used $\}$	

2

$3 \quad 4$

5

Range Lattice: [lo, hi] $\in(Z \cup\{-\infty, \infty\})^{2}$
$\perp=[$] empty range, $T=[-\infty, \infty]$,
$x \subseteq y: x$ is contained in y

$$
n \cup \bar{T}=\bar{T} \quad n \cup n=n \quad n \cup m=T \quad \text { if } n \neq m
$$

\cap : $11, \mathrm{~h} 1] \cap[12, \mathrm{~h} 2]=x$
let $I=\max (11, I 2)$,
$h=\min (h 1, h 2)$,
$\mathrm{x}=$ if $\mathrm{h}<\mathrm{l}$ then \perp else [l, h]
$\cup:[11, h 1] \cup[l 2, h 2]=$
[min(11, l2), max(h1, h2)]
ICP Integer Constant Propagation Lattice

$$
\mathrm{n} \cap \perp=\perp \quad \mathrm{n} \cap \mathrm{n}=\mathrm{n} \quad \mathrm{n} \cap \mathrm{~m}=\perp \text { if } \mathrm{n} \neq \mathrm{m}
$$

6

Lecture Compilation Methods SS 2013 / Slide 224b

Objectives:
Most important DFA lattices
In the lecture:

- The Examples are explained.
- A new lattice can be constructed by elementwise composition of simpler lattices; e.g. a bit-vector lattice is an n-fold composition of the lattice Bool.
- A new lattice may be constructed for a particular DFA problem.

Monotone Functions Over Lattices

The effects of program constructs on DFA information are described by functions over a suitable lattice,
e. g. the function for basic block B_{3} on $\mathrm{C}-2.22$:
$\mathrm{f}_{3}\left(<\mathrm{x}_{1} \mathrm{x}_{2} \mathrm{x}_{3} \mathrm{X}_{4} \mathrm{X}_{5} \mathrm{x}_{6} \mathrm{x}_{7} \mathrm{X}_{8}>\right)=\left\langle\mathrm{x}_{1} \mathrm{x}_{2} 0 \mathrm{x}_{4} 1 \mathrm{x}_{6} 0 \mathrm{x}_{8}>\in \mathrm{BV}^{8}\right.$
Gen-Kill pair encoded as function
$f: L \rightarrow L$ is a monotone function over the lattice L if
$\forall x, y \in L: x \subseteq y \Rightarrow f(x) \subseteq f(y)$
Finite height of the lattice and monotonicity of the functions guarantee termination of the algorithms.

Fixed points z of the function f, with $f(z)=z$, is a solution of the set of DFA equations.
MOP: Meet over all paths solution is desired, i. e. the „best" with respect to L
MFP: Maximum fixed point is computed by algorithms, if functions are monotone
If the functions f are additionally distributive, then MFP = MOP.
$f: L \rightarrow L$ is a distributive function over the lattice L if

$$
\forall x, y \in L: f(x \cap y)=f(x) \cap f(y)
$$

Lecture Compilation Methods SS 2013 / Slide 224c

Objectives:
DFA equations and monotone functions
In the lecture:
Understand solution of DFA equations as fixed point of monotone functions.

Variants of DFA Algorithms

Heuristic improvement:

Goal: propagate changes in the In and Out sets as fast as possible.
Technique: visit CFG nodes in topological order in the outer for-loop \{*\}.
Then the number of iterations of the outer repeat-loop is only determined by back edges in the CFG

Algorithm for backward problems:

Exchange In and Out sets symmetrically in the algorithm of C-2.22b.
The nodes should be visited in topological order as if the directions of edges were flipped.

Hierarchical algorithms, interval analysis:

Regions of the CFG are considered nodes of a CFG on a higher level. That abstraction is recursively applied until a single root node is reached.
The Gen, Kill sets are combined in upward direction; the \ln, Out sets are refined downward.

Lecture Compilation Methods SS 2013 / Slide 226

Objectives:
Overview on DFA algorithms
In the lecture:

- The variants of the algorithm of C-2.25 are explained.
- The improvement is discussed.
- The idea of hierarchical approaches is explained.

Suggested reading:
Kastens / Übersetzerbau, Section 8.2.5, 8.2.6

Questions:

- For a backward problem the blocks could be considered in reversed topological order. Why is that not a good idea?

Program Analysis: Call Graph (context-insensitive)

Nodes: defined functions
Arc $\mathrm{g}->\mathrm{h}$: function g contains a call h() ,
i. e. a call g() may cause the execution of a call h()

```
void a () {...b()...c()...f()...}
void b () {...d()...c()...}
void c() {...e()...}
void d() {...}
void e() {...v++; ...b()...}
void f() {...d()...}
```


Analysis of structure:

b, c, e are recursive;
a, d, fare non-recursive

Propagation of properties:

assume a call e() may modify a global variable v
then calls $a(), b(), c()$ may indirectly cause modification of v

```
v = f(); cnt = 0; while(...){...b(); cnt += v;}
```


Lecture Compilation Methods SS 2013 / Slide 227

Objectives:
Understand call graphs
In the lecture:

- Structural abstraction of call relation,
- Structural properties, e. g. reachability,
- Simplified implementation of non-recursive functions, of functions without calls, of functions that are never called.
- Propagation of information along call paths.
- Description of function behaviour, e. g. no side-effect on global variables.

Program Analysis: Call Graph (context-sensitive)

Nodes: defined functions and calls (bipartite)
Arc g-> h : function g contains a call $h()$,i.e a call $g()$ may cause the execution of a call $h()$ or call g() leads to function g

```
void a () {...b()...c()...f()...}
void b () {...d()...c()...}
void c() {...e()...}
void d() {...}
void e() {...v++; ...b()...}
void f() {...d()...}
```


Calls of the same function in different contexts are distinguished by different nodes, e.g. the call of c in a and in b.

Analysis can be more precise in that aspect.

Lecture Compilation Methods SS 2013 / Slide 227a

Objectives:
Understand context-sensitive call graphs
In the lecture:
Distinguish context-insensitive and context-sensitive call graphs

Calls Using Function Variables

Contents of function variables is assigned at run-time.
Static analysis does not know (precisely) which function is called.
Call graph has to assume that any function may be called.

```
void a()
    {...(*h)(0.3, 27)...}
```


Analysis for a better approximation

 of potential callees:only those functions which

1. fit to the type of h
2. are assigned somewhere in the program
3. can be derived from the reaching definitions at the call
```
void m (int j) {...}
```

void m (int j) {...}
void g (float x, int i) {...}
void g (float x, int i) {...}
...k = m;... f(g); ...
...k = m;... f(g); ...
void a()
void a()
{ void (*h)(float,int) = g;
{ void (*h)(float,int) = g;
if(...) h = s;
...(*h)(0.3, 27)...
}

```

\section*{Lecture Compilation Methods SS 2013 / Slide 228}

Objectives:
Approximate call targets
In the lecture:
- Explain the approximation techniques using the example.
- Relate the problem to dynamically bound method calls.

\section*{Analysis of Object-Oriented Programs}

Aspects specific for object-oriented analysis:
1. hierarchy of classes and interfaces specifies a complex system of subtypes
2. hierarchy of classes and interfaces specifies inheritance and overriding relation for methods
3. dynamic method binding for method calls v.m (. . .) the callee is determined at run-time good object-oriented style relies on that feature
4. many small methods are typical object-oriented style
5. library use and reuse of modules complete program contains many unused classes and methods

Static predictions for dynamically bound method calls are essential for most analyses

\section*{Lecture Compilation Methods SS 2013 / Slide 229}

Objectives:
Overview on oo analysis issues
In the lecture:
- Role of class hierarchy for program analysis.
- Role of dynamic method binding for program analysis.

\section*{Class Hierarchy Graph}

Node: class or interface
Arc \(\mathbf{a}->\mathbf{b}\) : \(\quad a\) is subclass of \(b\) or a implements interface \(b\)


\section*{Lecture Compilation Methods SS 2013 / Slide 230}

Objectives:
Example for further consideration
In the lecture:
Recall central OO language properties:
- class hierarchy and typing,
- typed variables and method calls v.m(),
- inheritance of methods,
- overriding of methods,
- dynamically bound calls

\section*{Assignments:}

Recall the above mentioned language properties for Java and C++.


Lecture Compilation Methods SS 2013 / Slide 231
Objectives:
Understand the call graph problem
In the lecture:
The topics on the slide are explained. using the example.

\section*{Call Graphs Constructed by Class Hierarchy Analysis (CHA)}

The call graph is reduced to a set of reachable methods using the class hierarchy and the static type of the receiver expression in the call:

If a method \(F-p\) is reachable and if it contains a dynamically bound call v.m(...) and \(T\) is the static type of \(v\),
then every method \(\mathbf{m}\) that is inherited by \(\mathbf{T}\) or by a subtype of \(\mathbf{T}\) is also reachable, and arcs go from F-p to them.


Lecture Compilation Methods SS 2013 / Slide 232
Objectives:
In the lecture:
The CHA method is explained using the example.

\section*{Refined Approximations for Call Graph Construction}

Class Hierarchy Analysis (CHA): (see C-2.32)
Rapid Type Analysis (RTA):
As CHA, but only methods of those classes C are considered which are instantiated (new C()) in a reachable method.

\section*{Reaching Type Analysis:}

Approximations of run-time types is propagated through a graph: nodes represent variables, arcs represent copy assignments.

Declared Type Analysis:
one node T represents all variables declared to have type T
Variable Type Analysis:
one node V represents a single variable
Points-to Analysis:
Information on object identities is propagated through the control-flow graph

\section*{Lecture Compilation Methods SS 2013 / Slide 233}

Objectives:
Powerful OO type analyses
In the lecture:
The methods are explained using small examples.

\section*{Results of Analysis of Dynamically Bound Calls}


\section*{Lecture Compilation Methods SS 2013 / Slide 234}

Objectives:
Effects on call identification
In the lecture:
The topics on the slide are explained. Examples are given.
- A pair of bars characterizes the number of method implementations, that may be bound to a set of calls having a particular type characteristics.
- Compare the results for CHA and points-to analysis.

\section*{Modules of a Toolset for Program Analysis}
\begin{tabular}{|c|c|c|}
\hline analysis module & purpose & category \\
\hline ClassMemberVisibility & examines visibility levels of declarations & \multirow{5}{*}{visualization} \\
\hline MethodSizeStatistics & examines length of method implementations in bytecode operations and frequency of different bytecode operations & \\
\hline ExternalEntities & histogram of references to program entities that reside outside a group of classes & \\
\hline InheritanceBoundary & histogram of lowest superclass outside a group of classes & \\
\hline SimpleSetterGetter & recognizes simple access methods with bytecode patterns & \\
\hline MethodInspector & decomposes the raw bytecode array of a method implementation into a list of instruction objects & auxiliary analysis \\
\hline ControlFlow & builds a control flow graph for method implementations & \multirow{6}{*}{fundamental analyses} \\
\hline Dominator & constructs the dominator tree for a control flow graph & \\
\hline Loop & uses the dominator tree to augment the control flow graph with loop and loop nesting information & \\
\hline InstrDefUse & models operand accesses for each bytecode instruction & \\
\hline LocalDefUse & builds intraprocedural def/use chains & \\
\hline LifeSpan & analyzes lifeness of local variables and stack locations & \\
\hline DefUseTypeInfo & infers type information for operand accesses & \multirow{5}{*}{analysis of incomplete programs} \\
\hline Hierarchy & class hierarchy analysis based on a horizontal slice of the hierarchy & \\
\hline PreciseCallGraph & builds call graph based on inferred type information, copes with incomplete class hierarchy & \\
\hline ParamEscape & transitively traces propagation of actual parameters in a method call (escape = leaves analyzed library) & \\
\hline ReadWriteFields & transitive liveness and access analysis for instance fields accessed by a method call & \\
\hline
\end{tabular}

Table 0-1. Analysis plug-ins in our framework
[ Michael Thies: Combining Static Analysis of Java Libraries with Dynamic Optimization, Dissertation, Shaker Verlag, April 2001]

\section*{Lecture Compilation Methods SS 2013 / Slide 235}

\section*{Objectives:}

See analysis methods provided by a tool
In the lecture:
Some modules are related to methods presented in this lecture.

\section*{Questions:}

Which modules implement a method that is presented in this lecture?```

