

5.1 Instruction Scheduling Data Dependence Graph

Exhibit potential fine-grained parallelism among operations.
Sequential code is over-specified!
Data dependence graph (DDG) for a basic block:
Node: operation;
Edge $\mathrm{a}->\mathrm{b}$: operation b uses the result of operation a

Example for a basic		
$1:$	t 1	$:=\mathrm{a}$
$2:$	t 2	$:=\mathrm{b}$
$3:$	t 3	$:=\mathrm{t} 1+\mathrm{t} 2$
$4:$	x	$:=\mathrm{t} 3$
$5:$	t 4	$:=\mathrm{c}$
$6:$	t 5	$:=\mathrm{t} 3+\mathrm{t} 4$
$7:$	y	$:=\mathrm{t} 5$
$8:$	t 6	$:=\mathrm{d}$
$9:$	t 7	$:=\mathrm{e}$
$10:$	t 8	$:=\mathrm{t} 6+\mathrm{t} 7$
$11:$	z	$:=\mathrm{t} 8$

data dependence graph
(1) (2)
ti are symbolic registers, store intermediate results, obey single assignment rule

List Scheduling

Input: data dependence graph
Output: a schedule of at most k operations per cycle, such that all dependences point forward; DDG arranged in levels
Algorithm: A ready list contains all operations that are not yet scheduled, but whose predecessors are scheduled
Iterate: select from the ready list up to k operations for the next cycle (heuristic), update the ready list

- Algorithm is optimal only for trees.
- Heuristic: Keep ready list sorted by distance to an end node, e. g.
$(125)(893)(6104)(711)$
without this heuristic:
$(189)(25$ 10) (3 11) (64) (7)
() operations in one cycle

Critical paths determine minimal schedule length: e. g. 1 -> $3->6->7$

Variants and Restrictions for List Scheduling

- Allocate as soon as possible, ASAP (C-5.3); as late as possible, ALAP
- Operations have unit execution time (C-5.3); different execution times: selection avoids conflicts with already allocated operations
- Operations only on specific functional units (e. g. 2 int FUs, 2 float FUs)
- Resource restrictions between operations, e. g. <= 1 load or store per cycle

Scheduled DDG models number of needed registers:

- arc represents the use of an intermediate result
- cut width through a level gives the number of registers needed

The tighter the schedule the more registers are needed (register pressure).

Instruction Scheduling for Pipelining

Instruction pipeline with 3 stages:

3	2	1	instruction sequence			
14	15	nop				

Dependent instructions may not follow one another immediately.

without scheduling:			
$1:$	t 1	$:=\mathrm{a}$	
$2:$	t 2	$:=\mathrm{b}$	
$3:$	nop		
$3:$	t 3	$:=\mathrm{t} 1+\mathrm{t} 2$	
$4:$	nop		
$4:$	x	$:=\mathrm{t} 3$	
$5:$	t 4	$:=\mathrm{c}$	
	nop		
$6:$	t 5	$:=\mathrm{t} 3+\mathrm{t} 4$	
	nop		
$7:$	y	$:=\mathrm{t} 5$	
$8:$	t 6	$:=\mathrm{d}$	
$9:$	t 7	$:=\mathrm{e}$	
	nop		
$10:$	t 8	$:=\mathrm{t} 6+\mathrm{t} 7$	
	nop		
$11:$	z	$:=\mathrm{t} 8$	

Instruction Scheduling Algorithm for Pipelining

Algorithm: modified list scheduling:
Select from the ready list such that the selected operation

- has a sufficient distance to all predecessors in DDG
- has many successors (heuristic)
- has a long path to the end node (heuristic)

Insert an empty operation if none is selectable.

Ready list with additional information:											
opr.	1	2	5	8	9	3	6	4	10	7	11
succ $\#$	1	1	1	1	1	2	1	0	1	0	0
to end	3	3	2	2	2	2	1	1	1	0	0
sched.	1	2	3	5	6	4	7	9	8	10	11
cycle											

DDG with Loop Carried Dependences

Factorial computation:

Loop unrolling

Loop unrolling: A technique for parallelization of loops.

A single loop body does not exhibit enough parallelism => sparse schedule.

 Schedule the code (copies) of several adjacent iterations together=> more compact schedule

sequential	parallel schedule	unrolled loop	parallel schedule
loop	for single body	$(3$ times $)$	for unrolled loop

Prologue and epilogue needed to tak care of iteration numbers that are not multiples of the unroll factor

Software Pipelining

Software Pipelining: A technique for parallelization of loops
A single loop body does not exhibit enough parallelism
=> sparse schedule.
Overlap the execution of several adjacent iterations => compact schedule

The pipelined loop body

has each operation of the original sequential body,
they belong to several iterations,
they are tightly scheduled,
its length is the initiation interval II,
is shorter than the original body
Prologue, epilogue: initiation and finalization code
sequential

Result of Software Pipelining

t	t_{m}		ADD	MUL	MEM	CTR
0	0					beq r1;r2:exit
1	1		add rl, $1: \mathrm{rl}$			
2	0		add r8, 4 : r8	mul r5, r1: r5		beq r1; 2 2 : ex
3	1		add r1, 1: rl	... mul		
4	0	L:	add r8, 4: r8	mul r5, r1 : r5	sto r5 : m r8	beq r1; [2 : ex
5	1		add rl, 1: rl 1	mul	sto	bra L
6	1	ex:		... mul	... sto	
7	0				sto r5:m r8	
8	1				... sto	
9	0					bra exit

4 dedicated FUs schedule of the loop body for II = 2 mul and sto need 2 cycles add and sto in $\mathrm{t}_{\mathrm{m}}=0$, sto reads r 8 before add writes it
bra not in cycle 6, it collides with beq: $\mathrm{t}_{\mathrm{m}}=0$
prologue
software pipline with II = 2
epilogue

5.2 / 6. Data Parallelism: Loop Parallelization

Regular loops on orthogonal data structures - parallelized for data parallel processors
Development steps (automated by compilers):

- nested loops operating on arrays,
sequential execution of iteration space
- analyze data dependences
data-flow: definition and use of array elements

```
Declare b[0..N,O..N+1]
```



```
    B[I,J]:==
    NDND FOR
```

- transform loops
keep data dependences forward in time
- parallelize inner loop(s)

map to field or vector of processors
- map arrays to processors
such that many accesses are local, transform index spaces

C-5.12a / PPJ-51a

Examples for Iteration spaces of loop nests

Iteration space of loop nests

Iteration space of a loop nest of depth n :

- n-dimensional space of integral points (polytope)
- each point $\left(i_{1}, \ldots, i_{n}\right)$ represents an execution of the innermost loop body
- loop bounds are in general not known before run-time
- iteration need not have orthogonal borders
- iteration is elaborated sequentially
example:
computation of Pascal's triangle

```
DECLARE b[-1..N,-1..N]
FOR I := 0 .. N
        B[I,J]:= I
        D FOR B[I-1,J]+B[I-1,J-1]
END FOR
```


Data Dependences in Iteration Spaces
Data dependence from iteration point i1 to i2:

- Iteration i1 computes a value that is used in iteration i2 (flow dependence)
- relative dependence vector
$\mathbf{d}=\mathbf{i 2} \mathbf{- i 1}=\left(\mathrm{i} 2_{1}-\mathrm{i} 1_{1}, \ldots, \mathrm{i} 2_{\mathrm{n}}-\mathrm{i} 1_{\mathrm{n}}\right)$
holds for all iteration points except at the border
- Flow-dependences can not be directed against the execution order, can not point backward in time each dependence vector must be lexicographically positive, i. e. $d=\left(0, \ldots, 0, d_{i}, \ldots\right), d_{i}>0$

Example:
Computation of Pascal's triangle

```
DECLARE B[-1..N,-1..N]
FOR I := 0 m N N
    OR J := 0 # = 
```



```
    END FOR
```


Loop Transformation

The iteration space of a loop nest is
transformed to new coordinates. Goals:

- execute innermost loop(s) in parallel
- improve locality of data accesses;
in space: use storage of executing processor,
in time: reuse values stored in cache
- systolic computation and communication scheme

Data dependences must point forward in time, i.e. lexicographically positive and
not within parallel dimensions
non-linear transformations, e. g.

- Scaling: stretch the iteration space in one dimension, causes gaps
- Tiling: introduce additional inner loops that cover tiles of fixed size

Transformations defined by matrices

Transformation matrices: systematic transformation, check dependence vectors

Reversal

$$
\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) *\binom{\mathrm{i}}{\mathrm{j}}=\binom{\mathrm{i}}{-\mathrm{j}}=\binom{\mathrm{i}^{\prime}}{\mathrm{j}^{\prime}}
$$

Skewing

$$
\left(\begin{array}{ll}
1 & 0 \\
f & 1
\end{array}\right) *\binom{i}{j}=\binom{i}{f * i+j}=\binom{i^{\prime}}{j^{\prime}}
$$

Permutation

$$
\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) *\binom{\mathrm{i}}{\mathrm{j}}=\binom{\mathrm{j}}{\mathrm{i}}=\binom{\mathrm{i}}{\mathrm{j}}
$$

linear basic transformations:
Skewing: add iteration count of an outer loop to that of an inner one

Reversal: flip execution order for one dimension

Permutation: exchange two loops of the loop nest

SRP transformations (next slides)

Tastar matice

C-5.14b/PPJ-55

Reversal

Iteration count of one loop is negated, that dimension is enumerated backward
general transformation matrix

for $i=0$ to M for $j=0$ to N

2-dimensional:
loop variables

$$
\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) *\binom{\mathrm{i}}{\mathrm{j}}=\binom{\mathrm{i}}{-\mathrm{j}}=\binom{\mathrm{ir}}{\mathrm{jr}}
$$

for ir $=0$ to M for $\mathrm{jr}=-\mathrm{N}$ to 0
original
transformed

Skewing

general transformation matrix:

for $i=0$ to M for $\mathrm{j}=0$ to N

2-dimensional:
loop variables
old new
$\left(\begin{array}{cc}1 & 0 \\ f & 1\end{array}\right) *\binom{i}{j}=\binom{i}{f * i+j}=\binom{i S}{j s}$
for is $=0$ to M
for js $=\mathrm{f}$ *is to $\mathrm{N}+\mathrm{f}$ *is

Permutation

Two loops of the loop nest are interchanged; the iteration space is flipped;
the execution order of iteration points changes; new dependence vectors must be legal.
general transformation matrix:

i j

2-dimensional:
loop variables
-

$$
\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) *\binom{i}{j}=\binom{\mathrm{j}}{\mathrm{i}}=\binom{\mathrm{ip}}{\mathrm{jp}}
$$

for $i=0$ to M for $j=0$ to N
 original

$$
\begin{gathered}
\text { for ip }=0 \text { to } \mathrm{N} \\
\text { for jp }=0 \text { to } \mathrm{M} \\
\cdots \\
\text { transformed }
\end{gathered}
$$

Use of Transformation Matrices

- Transformation matrix \mathbf{T} defines new iteration counts in terms of the old ones: $\mathbf{T} * \mathbf{i}=\mathbf{i}^{\prime}$

$$
\text { e. g. Reversal } \quad\left(\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right) *\binom{\mathrm{i}}{\mathrm{j}}=\binom{\mathrm{i}}{-\mathrm{j}}=\binom{\mathrm{i}^{\prime}}{\mathrm{j}}
$$

- Transformation matrix \mathbf{T} transforms old dependence vectors into new ones: $\mathbf{T} * \mathbf{d}=\mathbf{d}$ '

$$
\text { e.g. } \quad\left(\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right) *\binom{1}{1}=\binom{1}{-1}
$$

- inverse Transformation matrix \mathbf{T}^{-1} defines old iteration counts in terms of new ones, for transformation of index expressions in the loop body: $\mathbf{T}^{\mathbf{- 1}} * \mathbf{i}^{\prime}=\mathbf{i}$

$$
\text { e.g. } \quad\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) *\binom{i^{\prime}}{j^{\prime}}=\binom{i^{\prime}}{-j^{\prime}}=\binom{i}{j}
$$

- concatenation of transformations first T_{1} then $\mathrm{T}_{2}: \mathrm{T}_{\mathbf{2}}{ }^{*} \mathrm{~T}_{1}=\mathbf{T}$

$$
\text { e.g. } \quad\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) *\left(\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right)=\left(\begin{array}{rr}
0 & -1 \\
1 & 0
\end{array}\right)
$$

Inequalities Describe Loop Bounds

The bounds of a loop nest are described by a set of linear inequalities.
Each inequality separates the space in "inside and outside of the iteration space":

$$
\begin{aligned}
& \left(\begin{array}{rr}
-1 & 1 \\
1 & 0 \\
0 & -1 \\
0 & 1
\end{array}\right) *\binom{i}{j} \leq\left(\begin{array}{l}
0 \\
M \\
0 \\
N
\end{array}\right) \\
& \begin{array}{ll}
& \quad \text { example } \\
& \\
& -\mathrm{i}+\mathrm{j} \leq 0 \\
2 & \mathrm{i} \leq \mathrm{M} \\
3 & -\mathrm{j} \leq 0 \\
4 & \mathrm{j} \leq \mathrm{N} \\
\text { transformed }
\end{array}
\end{aligned}
$$

1, 4: $j \leq \min (i, N)$
1+3: $0 \leq i$
3: $0 \leq j$
2: $i \leq M$
positive factors represent upper bounds
negative factors represent lower bounds
nators represent lower bounds

C-5.19 / PPJ-56a

Transformation of Loop Bounds

The inverse of a transformation matrix $\mathbf{T}^{\mathbf{- 1}}$ transforms a set of inequalities: $\mathbf{B}{ }^{*} \mathbf{T}^{\mathbf{- 1}} \mathbf{i} \leq \mathbf{c}$

$$
\begin{array}{cc}
\begin{array}{c}
\text { skewing } \\
\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right)
\end{array}\left(\begin{array}{rr}
1 & 0 \\
-1 & 1
\end{array}\right) \\
\text { example 1 }
\end{array}
$$ new bounds:

Example for Transformation and Parallelization of a Loop

```
for i = 0 to N
    for j = 0 to M
        a[i, j] = (a[i, j-1] + a[i-1, j]) / 2;
```

Parallelize the above loop.

1. Draw the iteration space.
2. Compute the dependence vectors and draw examples of them into the iteration space. Why can the inner loop not be executed in parallel?
3. Apply a skewing transformation and draw the iteration space.
4. Apply a permutation transformation and draw the iteration space. Explain why the inner loop now can be executed in parallel.
5. Compute the matrix of the composed transformation and use it to transform the dependence vectors.
6. Compute the inverse of the transformation matrix and use it to transform the index expressions.
7. Specify the loop bounds by inequalities and
transform them by the inverse of the transformation matrix.
8. Write the complete loops with new loop variables ip and jp and new loop bounds.

C-5.22 /PPJ-56d
Solution of the Transformation and Parallelization Example
1., $2 .:$

$$
\begin{array}{lll}
1 & \text {-jp } \leq 0 & 1,3=0 \leq i p \\
2 & \text { jp } \leq N & 2,4 \Rightarrow \text { ip } \leq M+N \\
3 & \text {-ip }+j p \leq 0 & 1,4 \Rightarrow \max (0, i p-M) \leq j p \\
4 & \text { ip }-j p \leq M & 2,3=>j p \leq \min (i p, N)
\end{array}
$$

8. for ip $=0$ to $M+N$
for $j p=\max (0, i p-M)$ to $\min (i p, N)$ $a[j p, i p-j p]=(a[j p, i p-j p-1]+a[j p-1, i p-j p]) / 2 ;$

Transformation and Parallelization

Data Mapping

Goal:

Distribute array elements over processors, such that as many accesses as possible are local.

Index space of an array:
n-dimensional space of integral index points (polytope)

- same properties as iteration space
- same mathematical model
- same transformations are applicable (Skewing, Reversal, Permutation, ...)
- no restrictions by data dependences

