
©
 2

01
3

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

4 Register Allocation
C-4.1

Use of registers:

1. intermediate results of expression evaluation

2. reused results of expression evaluation (CSE)

3. contents of frequently used variables

4. parameters of functions, function result
(cf. register windowing)

5. stack pointer, frame pointer , heap pointer, ...

Number of registers is limited - for each
register class: address, integer, floating point

Register allocation aims at reduction of

• number of memory accesses
• spill code, i. e. instructions that store and

reload the contents of registers

Specific allocation methods
for different context ranges:

• 4.1 expression trees (Sethi, Ullman)

• 4.2 basic blocks (Belady)

• 4.3 control flow graphs (graph coloring)

Symbolic registers: allocate a new symbolic register
to each value assignment (single assignment, no re-writing);
defer allocation of real registers to a later phase.

©
 2

00
2

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Register Windowing
C-4.2

r31
...
r26

r25
...
r16

r15
...
r10

r31
...
r26

r25
...
r16

r15
...
r10

r31
...
r26

r25
...
r16

r15
...
r10

parameters in
overlapping
registers

shift on call

Berkley Risc:

22 regs in window
16 shifted

6 overlapped

Register windowing:

• Fast storage of the processor is accessed
through a window.

• The n elements of the window are used as
registers in instructions.

• On a call the window is shifted by m<n
registers.

• Overlapping registers can be used under
different names from both the caller and the
callee.

• Parameters are passed without copying.

• Storage is organized in a ring;
4-8 windows; saved and restored as needed

Typical for Risc processors,
e.g. Berkley RISC, SPARC

©
 2

00
2

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Activation Records in Register Windows
C-4.3

shift on call

parameters

static link

return address

dynamic link

local variables

register area

call area parameters

static link

return address

dynamic link

local variables

register area

call area

• Parameters are passed in overlap
area without copying .

• Registers need not be saved
explicitly.

• If window is too small for an
activation record, the remainder is
allocated on the run-time stack ;
pointer to it in window.

©
 2

00
6

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

4.1 Register Allocation for Expression Trees
C-4.4

b
op

bl

eval. order needed registers b =

Tl Tr op max (bl, br + 1)

Tr Tl op max (br, bl + 1)
minimize

assume the results of Tl and Tr are in registers

 Tl Tr

br

number of available registers (regmax)
is upper limit for needed registers

Problem:
Generate code for expression evaluation.
Intermediate results are stored in registers.
Not enough registers:

spill code saves and restores.

Goal :
Minimize amount of spillcode.
see C-4.5a for optimality condition

Basic idea (Sethi, Ullman):
For each subtree minimize the
number of needed registes :

evaluate first the subtree that
needs most registers

©
 2

00
7

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Expression Tree Attribution
Implementation by attribution of trees:

Phase 1 bottom-up:
needed registers, evaluation order
Phase 2 top-down:
allocate registers
Phase 3 bottom-up:
compose code in evaluation order

C-4.5

regmax
op

regmax

 Tl Tr

regmax

Spill code needed:

Code (Tr)
store R r, h
Code (Tl)
load h, R r
op Rr, Rl

need first res avail3 r 0 0,1,2

3 l 1 0,1,23 l 0 0,1,2

2 r 1 1,2 2 l 0 0,22 l 1 0,1,2

2 l 2 1,2

1 l 1 1

1 l 1 1,2

1 l 0 0,1,2

2 l 0 0,1,2

1 l 1 11 l 2 1,2

1 l 1 0,1,2 1 l 0 0,2

1 l 2 21 l 0 0,2

Example
spill

regmax = 3

load h, Rr is not needed if h can be a
memory operand in op h, Rl

©
 2

01
3

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Contiguous code vs. optimal code
C-4.5a

 Ta Tb

add_i

toFloat

add_f

(3, 3) (0, 3)

(3, 3)

(3, 3)

spill float

sub_f

The method assumes that the code for every subtree is contiguous .
(I.e. there is no interleaving between the code of any two disjoint subtrees.)

The method is optimal for a certain configuration of registers and operations , iff
every optimal evaluation code can be arranged to be contiguous .

Counter example :

Registers: 3 int and 3 float
Register need: (i, f) from (0, 0) to (3, 3)

Operations: int - and float - arithmetic,
toFloat (widening)

register use: (3, 3) (1, 0) (0, 1) (0, 0) (0, 3) (0, 1) (0, 2) (0, 1)

contiguous : Ta add_i toFloat store_f Tb sub_f load_f add_f

optimal : Ta add_i T b sub_f toFloat add_f

register use: (3, 3) (1, 0) (1, 3) (1, 1) (1, 2) (0, 1)

©
 2

01
1

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

4.2 Register Allocation for Basic Blocks by Life-Time Analysis

Lifetimes of values in a basic block are used to minimize the number of registers needed.

1st Pass :

2nd Pass:

The technique has been presented originally 1966 by
Belady as a paging technique for storage allocation .

C-4.6

Determine the life-times of values: from the definition to the last use
(there may be several uses!).

Life-times are represented by intervals in a graph

cut of the graph = number of registers needed at that point

at the end of 1st pass:
maximal cut = number of register needed for the basic block

allocate registers in the graph :

In case of shortage of registers: select values to be spilled ; criteria :

- a value that is already in memory - store instruction is saved

- the value that is latest used again

allocate registers in the instructions ; evaluation order remains unchanged

©
 2

00
2

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Example for Belady‘s Technique
C-4.7

(a)

(b)
(c)

d1 d2 d2 d3 d3 d4 d3 d3 d3
d2
d1d1*

d2*

register allocations

* spilled: reloaded from x

4 regs
3 regs
3 regs

d1 d2 d3 d3 d3 d3
d3
d3

d3d3d3d3d2d2

* spilled: store;...; load

a b c d e f g h i

a := x

b := y

b + a
c :=

d := z

d * c
e :=

f := s
e / f

g :=

g + a
h :=

h * c
i :=

.

.

.

.

. .

.

.

.

. .

.
.
. .

. .
.

.

Life-times of values in a basic block

maximal register need

©
 2

01
1

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

4.3 Register Allocation by Graph Coloring

Definitions and uses of variables in control-flow graphs for function bodies are analyzed (DFA).
Conflicting life-times are modelled. Presented by Chaitin .

Construct an interference graph:

Nodes: Variables that are candidates for being kept in registers

Edge {a, b}: Life-times of variables a and b overlap
=> a, b have to be kept in different registers

Life-times for CFGs are determined by data-flow analysis .

Graph is „colored“ with register numbers.

NP complete problem; heuristic technique for coloring with k colors (registers):

eliminate nodes of degree < k (and its edges)

 if the graph is finally empty:
graph can be colored with k colors
assign colors to nodes in reverse order of elimination

else
graph can not be colored this way
select a node for spilling
repeat the algorithm without that node

C-4.8

©
 2

01
3

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Example for Graph Coloring
C-4.9

a := x
c := y
f := z

B1

b := a+1B2 b := f+a B3

d := c
e := a+bB4

e := b
d := a B5

z := b+d
y := e

B6

CFG with definitions and uses of variables

b, d, e b, d, e
b, d, e

a, b, c

a, b, c
a, b, c

a, b

a, c, f

a, c, f
a, c

f a

c

f a

c b

a

c b

a d

b e

d

b e

d

b e

a
c

d2 d1 d3
f a d

c b e
d3 d2 d1

interference graph

variables in memory: x, y, z

variables considered for register alloc.:
a, b, c, d, e, f

results of live variable analysis:
b, d, e

f a

c

contribution to
interference graphB1

