
©
 2

00
2

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

3. Code Generation
C-3.1

Implementation of code generation:

• Storage mapping:
a traversal through the program and the
definition module computes
sizes and addresses of storage objects

• Code selection: use a generator for
pattern matching in trees

• Register allocation:
methods for expression trees, basic
blocks, and for CFGs

Design of code generation:

• analyze properties of the target
processor

• plan storage mapping

• design at least one instruction
sequence for each operation of the
intermediate language

Input: Program in intermediate language

Tasks:
Storage mapping properties of program objects (size, address)

in the definition module
Code selection generate instruction sequence, optimizing selection
Register allocation use of registers for intermediate results and for variables

Output: abstract machine program, stored in a data structure

©
 2

00
2

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

3.1 Storage Mapping

Objective:
for each storable program object compute storage class, relative address, size

Implementation:
use properties in the definition module, traverse defined program objects

Design the use of storage areas:

code storage progam code

global data to be linked for all compilation units

run-time stack activation records for function calls

heap storage for dynamically allocated objects, garbage collection

registers for addressing of storage areas (e. g. stack pointer)
function results, arguments
local variables, intermediate results (register allocation)

Design the mapping of data types (next slides)
Design activation records and translation of function calls (next section)

C-3.2

©
 2

00
2

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Storage Mapping for Data Types
C-3.3

Basic types

arithmetic, boolean, character types

match language requirements and machine properties:
data format, available instructions,
size and alignment in memory

Structured types

for each type representation in memory and
code sequences for operations,
e. g. assignment, selection, ...

record relative address and
alignment of components;
reorder components for optimization

union storage overlay,
tag field for discriminated union

set bit vectors, set operations

for arrays and functions see next slides

©
 2

00
2

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Array Implementation: Pointer Trees

...

...

l3

u3

l3

u3

l2

u2

l1

u1

10

5

4

C-3.4

An n-dimensional array

a: array[l1..u1, l2..u2, ..., ln..un] of real;

is implemented by a tree of linear arrays ;
n-1 levels of pointer arrays and data arrays on the n-th level

Each single array can be allocated separately, dynamically; scattered in memory

In Java arrays are implemented this way.

©
 2

00
2

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Array Implementation: Contiguous Storage

10

5

4

store[start] ... store[start + elno*elsz - 1]
start

C-3.5

An n-dimensional array

a: array[l1..u1, l2..u2, ..., ln..un] of real;

is mapped to one contiguous storage area
linearized in row-major order :

linear storage map of array a onto byte-array store from index start :
number of elements elno = st1 * st2 * ... * stn
i-th index stride sti = ui - li + 1
element size in bytes elsz

Index map of a[i1, i2, ..., in] :

store[start+ (..((i1-l1)*st2 + (i2-l2))*st3 +..)*stn + (in-ln))*elsz]

store[const + (..(i1*st2 + i2)*st3 +..)*stn + in)*elsz]

©
 2

00
2

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Functions as Data Objects
C-3.6

Functions may occur as data objects :

• variables

• parameters

• function results

• lambda expressions
(in functional languages)

Functions that are defined on the
outermost program level (non-nested)

can be implemented by just the
address of the code .

Functions that are defined in nested structures have to be
implemented by a pair: (closure, code)

The closure contains all bindings of names to variables or values that
are valid when the function definition is executed .

In run-time stack implementations the
closure is a sequence of activation records on the static
predecessor chain.

©
 2

00
6

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

3.2 Run-Time Stack
Activation Records

Run-time stack contains one activation record for each active function call.

Activation record:
provides storage for the data of a function call.

dynamic link:
link from callee to caller,
to the preceding record on the stack

static link:
link from callee c to the record s where c is defined

s is a call of a function which contains the definition
of the function, the call of which created c.

Variables of surrounding functions are
accessed via the static predecessor chain.

Only relevant for languages which allow
nested functions , classes, objects.

closure of a function call:
the activation records on the static predecessor chain

C-3.7

parameters

static link

return address

dynamic link

local variables

register save area

activation record:

©
 2

01
1

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Example for a Run-Time Stack

Run-time stack :
A call creates an activation record and pushes it onto the stack.
It is popped on termination of the call.

The static link points to the activation record where the called function is defined, e. g. r3 in q3

Optimization: activation records of non-recursive functions may be allocated statically.

Languages without recursive functions (FORTRAN) do not need a run-time stack.

Parallel processes, threads, and coroutines need a separate run-time stack each.

C-3.8

q
int i;

r

b=i+1;

if(..) q();
r();

q();

h float a;

int b;

nested
h

q1

q2

q3

r

q:

i:
r 1:

i:
r 2:

i:
r 3:

b=i+1;

a:

b:

static
links

push, pop

functions

©
 2

00
4

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Not-Most-Recent Property

The static link of an activation record c for a function r
points to an activation record d for a function q where r is defined in.
If there are activation records for q on the stack, that are more recently created than d,
the static link to d is not-most-recent .

That effect can be achieved by using functional parameters or variables.
Example:

C-3.9

q(funct f)
int i;

r

b=i+1;

if(..) q(r);

*f();

q(q);

h float a;

int b;

nested
h

q3

r 2

q:

i:
r 3:

b=i+1;

a:

b:

static
links

functions

f: r 2

q2
i:
r 2:

f: r 1

q1
i:
r 1:

f: q

not-most-
recent

©
 2

00
2

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Closures on Run-Time Stacks

Function calls can be implemented by a run-time stack if the

closure of a function is still on the run-time stack when the function is called .

Language conditions to guarantee run-time stack discipline:

Pascal: functions not allowed as function results, or variables

C: no nested functions

Modula-2: nested functions not allowed as values of variables

Functional languages maintain activation records on the heap instead of the run-time stack

C-3.10

q
int i;

r

b=i+1;

return r;

*(q()) ();

h float a;

int b;

h

r

q:

b=i+1;

a:

b:q1 i:
r 1:

h
q:
a:

?

during the
call of q

the closure
for the call of r
is missing

Example for violation:

©
 2

01
1

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Activation Records and Call Code
C-3.11

result
parameters
static link
return address
dynamic link
local variables

register save area

activation record:

- +

+ -

base
address

0

call code function code

push parameter values
push static link
subroutine jump

pop static link
pop parameter area
use and pop result

push dynamic link
stack register := top of stack
increment top of stack
for local variables
save registers
...
function body
...
restore registers
deallocate local variables
pop stack register
return jump

©
 2

00
2

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

3.3 Code Sequences for Control Statements

A code sequence defines how a control statement is transformed into jumps and labels.

Notation of the Code constructs:

Code (S) generate code for statements S

Code (C, true, M) generate code for condition C such that
it branches to M if C is true,
otherwise control continues without branching

Code (A, Ri) generate code for expression A such that the
result is in register Ri

C-3.12

Code sequence for if-else statement:

if (cond) ST; else SE;:

Code (cond, false, M1)
Code (ST)
goto M2

M1: Code (SE)
M2:

©
 2

00
7

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Short Circuit Translation of Boolean Expressions

Boolean expressions are translated into sequences of conditional branches .
Operands are evaluated from left to right until the result is determined.

2 code sequences for each operator; applied to condition tree on a top-down traversal:

C-3.13

if a or b and c then ST else SE

true

false

Code (A and B, true, M) : Code (A, false, N)
Code (B, true, M)
N:

Code (A and B, false, M) : Code (A, false, M)
Code (B, false, M)

Code (A or B, true, M) : Code (A, true, M)
Code (B, true M)

Code (A or B, false, M) : Code (A, true, N)
Code (B, false, M)
N:

Code (not A, X, M) : Code (A, not X, M)

Code (A < B, true, M) : Code (A, Ri);
Code (B, Rj)
cmp Ri, Rj
braLt M

Code (A < B, false, M) : Code (A, Ri);
Code (B, Rj)
cmp Ri, Rj
braGe M

Code for a leaf: conditional jump

©
 2

00
2

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Example for Short Circuit Translation
C-3.14

if a or b and c then ST else SE

true

false

if-stmt

ST goto M2; M1: SE; M2:
or

a and

b c

condition target

f M1

t N f M1

f M1 f M1

N:

load a, R1
braNe N

load b, R1
braEq M1

load c, R1
braEq M1

code

1

2 3

4

5 6

3

inherited
attributes

then-part else-part

©
 2

00
7

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Code Sequences for Loops
C-3.15

While-loop variant 1:

while (Condition) Body

M1: Code (Condition, false, M2)
Code (Body)
goto M1

M2:

While-loop variant 2:

while (Condition) Body

goto M2
M1: Code (Body)
M2: Code (Condition, true, M1)

Pascal for-loop unsafe variant:

for i:= Init to Final do Body

i = Init
L: if (i>Final) goto M

Code (Body)
i++
goto L

M:

Pascal for-loop safe variant :

for i:= Init to Final do Body

if (Init==minint) goto L
i = Init - 1
goto N

L: Code (Body)
N: if (i>= Final) goto M

i++
goto L

M:

©
 2

01
1

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

3.4 Code Selection
C-3.16

cont

addradd

addradd
R2,12

R6,12
addr
R6,12

add
R1

cont

const
6

load R6,8
addr
R6,8

(R2,18)

R2,18

6

load (R6,8), R1
add R6,R1,R2
store (R2,18),...

cost: 3 instructions

a

ix

s

assign
void

...

store R5
cont

load

addradd
R4,12

addradd
R2,12

R6,12
addr
R6,12

add R1
cont

add R3
constmove6

load
R6,8addr

R6,8load (R6,8), R1
add R6,R1,R2
move 6,R3
add R2,R3,R4
load (R4,12),R5
store R5, ...

cost: 6 instructions

a

ix

s

assign
void

...
store

• Given: target tree in intermediate language.

• Optimizing selection: Select patterns that translate single nodes or small subtrees
into machine instructions; cover the whole tree with as few instructions as possible.

• Method: Tree pattern matching, several techniques

Example: assignment
... = a[i].s;

assumed:
R6: points to current activation record
relative address of a is 12
induct. var. i is substituted by ix, rel. adr 8
record elem. s has rel. adr. 6

©
 2

00
7

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Selection Technique: Value Descriptors

alternative translation patterns to be selected context dependend:

addradd

Ri, c1 c2

Ri, c1 + c2

addradd

Ri Rj

Rk

addradd Ri, c1 c2 -> Ri, c1 + c2 ./. addradd Ri Rj -> Rk add Ri, Rj, Rk

Value descriptors state how/where the
value of a tree node is represented, e. g.

Ri value in register Ri
c constant value c

Ri,c address Ri + c

(adr) contents at the address adr

C-3.17

Intermediate language tree node operators ;
e.g.:

addr address of variable
const constant value
cont load contents of address
addradd address + value

©
 2

01
1

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Example for a Set of Translation Patterns
C-3.18

operator operands result code
1 addr Ri, c -> Ri,c ./.

2 const c -> c ./.
3 const c -> Ri move c, Ri

4 cont Ri, c -> (Ri, c) ./.
5 cont Ri -> (Ri) ./.
6 cont Ri, c -> Rj load (Ri, c), Rj
7 cont Ri -> Rj load (Ri), Rj

8 addradd Ri c -> Ri, c ./.
9 addradd Ri, c1 c2 -> Ri, c1 + c2 ./.
10 addradd Ri Rj -> Rk add Ri, Rj, Rk
11 addradd Ri, c Rj -> Rk, c add Ri, Rj, Rk

12 assign Ri Rj -> void store Rj, Ri
13 assign Ri (Rj, c) -> void store (Rj,c), Ri
14 assign Ri,c Rj -> void store Rj, Ri,c

©
 2

01
1

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Tree Covered with Translation Patterns
C-3.19

cont

addradd

addradd
R2,12

R6,12
addr
R6,12

add
R1

cont

const
6

load
R6,8
addr
R6,8

(R2,18)

R2,18

6

load (R6,8), R1
add R6,R1,R2
store (R2,18),...

cost: 3 instructions

1

1

11

6

4

2

9

assign
void

...

13

store R5
cont

load

addradd
R4,12

addradd
R2,12

R6,12
addr
R6,12

add R1
cont

add
R3

constmove6

loadR6,8
addr
R6,8

load (R6,8), R1
add R6,R1,R2
move 6,R3
add R2,R3,R4
load (R4,12),R5
store R5, ...
cost: 6 instructions

1

1

6

11

11

3
6

assign
void

...

12

store

tree for assignment
... = a[i].s;

6

application of pattern #6

©
 2

01
1

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Pattern Selection
C-3.20

cont

addradd

addradd

addr cont

const

addr

load (R6,8), R1
add R6,R1,R2
store (R2,18),...

cost: 3 instructions

{(void,lhscost+3)}

{((Ri+c),2), (Ri,3)}

{(Ri+c,2), (Ri+c,4)}

{(Ri+c,2)}

{(Ri+c,0)} {((Ri+c),0), (Ri,1)}

{(Ri+c,0)}

{(c,0), (Ri,1)}

4 6

9 11

11

1 4 6

1

2 3

assign

... 13

Pass 1 bottom-up:

Annotate the nodes with sets of pairs
{ (v, c) | v is a kind of value descriptor that an

applicable pattern yields,
c are the accumulated subtree costs}

If (v, c1), (v, c2) keep only the cheaper pair.

Pass 2 top-down:

Select for each node the cheapest pattern,
that fits to the selection made above.

Pass 3 bottom-up:

Emit code.

Improved technique:

relative costs per sets =>
finite number of potential sets
integer encoding of the sets at generation time

©
 2

00
4

be
i P

ro
f.

 D
r.

 U
w

e
K

as
te

ns

Pattern Matching in Trees: Bottom-up Rewrite
C-3.21

Bottom-up Rewrite Systems (BURS) :
a general approach of the pattern matching method:

Specification in form of tree patterns, similar to C-3.18 - C-3.20

Set of patterns is analyzed at generation time.

Generator produces a tree automaton with a finite set of states.

On the bottom-up traversal it annotates each tree node with
a set of states:
those selection decisions which may lead to an optimal solution.

Decisions are made on the base of the costs of subtrees
rather than costs of nodes.

Generator: BURG

©
 2

01
1

be
i P

ro
f.

 D
r.

 U
w

e
K

as
te

ns

Tree Pattern Matching by Parsing

The tree is represented in prefix form.

Translation patterns are specified by tuples (CFG production, code, cost),
Value descriptors are the nonterminals of the grammar, e. g.

8 RegConst ::= addradd Reg Const nop 0

11 RegConst ::= addradd RegConst Reg add Ri, Rj, Rk 1

Deeper patterns allow for more effective optimization:

Void ::= assign RegConst addradd Reg Const store (Ri, c1),(Rj, c2) 1

Parsing for an ambiguous CFG:
application of a production is decided on the base of the production costs
rather than the accumulated subtree costs!

Technique „Graham, Glanville“
Generators: GG, GGSS

C-3.22

