Data-Flow Analysis

Data-flow analysis (DFA) provides information about how the **execution of a program may manipulate its data**.

Many different problems can be formulated as **data-flow problems**, for example:

- Which assignments to variable **v** may influence a use of **v** at a certain program position?
- Is a variable **v** used on any path from a program position **p** to the exit node?
- The values of which expressions are available at program position p?

Data-flow problems are stated in terms of

- paths through the control-flow graph and
- properties of basic blocks.

Data-flow analysis provides information for global optimization.

Data-flow analysis does not know

- which input values are provided at run-time,
- which branches are taken at run-time.

Its results are to be interpreted pessimistic

Data-Flow Equations

A data-flow problem is stated as a **system of equations** for a control-flow graph.

System of Equations for forward problems (propagate information along control-flow edges):

Example **Reaching definitions:**

A definiton **d** of a variable **v** reaches the begin of a block **B** if **there is a path** from **d** to **B** on which **v** is not assigned again.

In, Out, Gen, Kill represent analysis information:

sets of statements, sets of variables, sets of expressions depending on the analysis problem

In, Out variables of the system of equations for each block

Gen, Kill a pair of constant sets that characterize a block w.r.t. the DFA problem

 Θ meet operator; e. g. Θ = \cup for "reaching definitions", Θ = \cap for "available expressions"

© 2006 bei Prof. Dr. Uwe Kastens

Specification of a DFA Problem

Specification of reaching definitions:

1. **Description**:

A definiton d of a variable v reaches the begin of a block B if **there is a path** from d to B on which v is not assigned again.

- 2. It is a forward problem.
- 3. The meet operator is union.
- 4. The **analysis information** in the sets are assignments at certain program positions.

5. Gen (B):

contains all definitions $\mathbf{d}: \mathbf{v} = \mathbf{e};$ in \mathbf{B} , such that \mathbf{v} is not defined after \mathbf{d} in \mathbf{B} .

6. Kill (B):

if **v** is assigned in **B**, then **Kill(B)** contains all definitions **d**: **v** = e; of blocks different from **B**. 2 equations for each basic block: $Out (B) = f_B (In (B))$ $= Gen (B) \cup (In (B) - Kill (B))$ $In (B) = \bigoplus_{h \in pred(B)}^{\Theta} Out (h)$ B $(In - Kill) \cup Gen = Out$

Variants of DFA Problems

forward problem:
 DFA information flows along the control flow
 In(B) is determined by Out(h) of the predecessor blocks

```
backward problem (see C-2.23):
DFA information flows against the control flow
Out(B) is determined by In(h) of the successor blocks
```

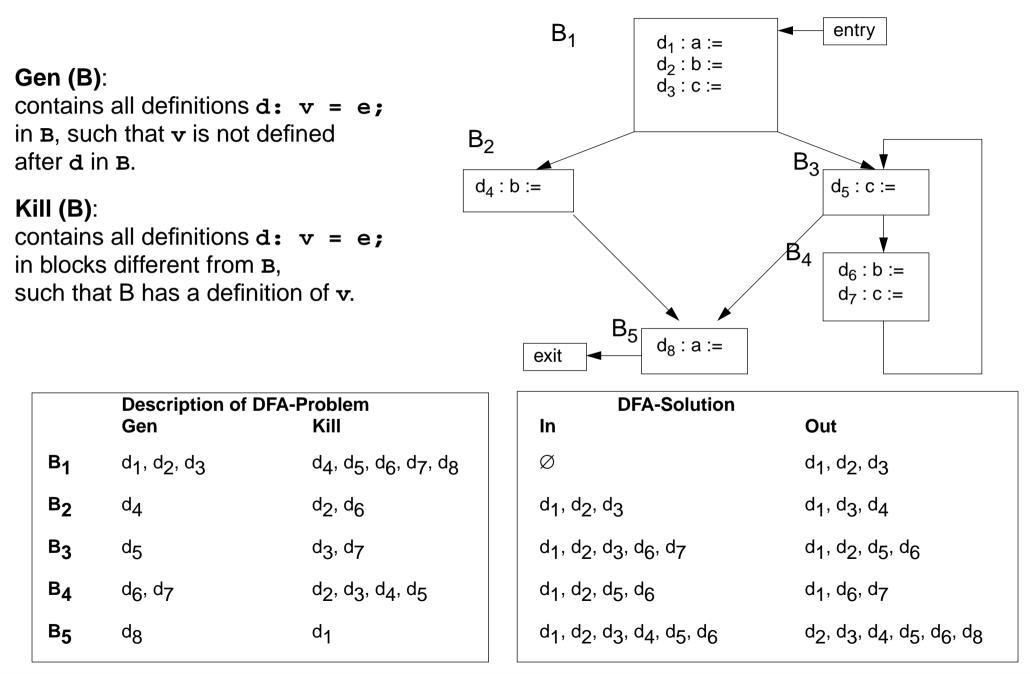
 union problem: problem description: "there is a path"; meet operator is Θ = ∪ solution: minimal sets that solve the equations

intersect problem: problem description: "for all paths" meet operator is $\Theta = \cap$ solution: maximal sets that solve the equations

• optimization information: sets of certain statements, of variables, of expressions.

Further classes of DFA problems over general lattices instead of sets are not considered here.

Example Reaching Definitions



C-2.22

C-2.22b **Iterative Solution of Data-Flow Equations** Input: the CFG; the sets Gen(B) and Kill(B) for each basic block B the sets In(B) and Out(B) Output: Algorithm: Initialization repeat Union: empty sets stable := true; for all B do for all $B \neq entry \{*\}$ begin $In(B) := \emptyset;$ do begin Out(B):=Gen(B) for all $V \in \text{pred}(B)$ do end; $In(B) := In(B) \Theta Out(V);$ Intersect: full sets oldout:= Out(B); for all B do $Out(B) := Gen(B) \cup (In(B)-Kill(B));$ begin stable:= stable and Out(B)=oldout In(B) := U;end Out(B):=Gen(B)∪ until stable (U - Kill(B))end;

Complexity: $O(n^3)$ with n number of basic blocks $O(n^2)$ if $|pred(B)| \le k << n$ for all B

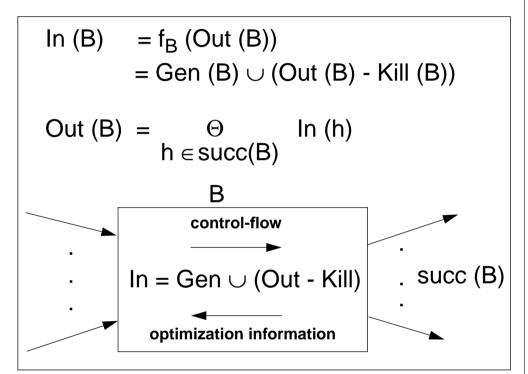
Backward Problems

System of Equations for **backward problems** propagate information against control-flow edges:

2 equations for each basic block:

Example Live variables:

- Description: Is variable v alive at a given point p in the program, i. e. is there a path from p to the exit where v is used but not defined before the use?
- 2. backward problem
- 3. optimization information: sets of variables
- 4. meet operator: $\Theta = \cup$ union
- 5. Gen (B): variables that are used in B, but not defined before they are used there.
- 6. Kill (B): variables that are defined in B, but not used before they are defined there.



Important Data-Flow Problems

- Reaching definitions: A definiton d of a variable v reaches the beginning of a block B if there is a path from d to B on which v is not assigned again.
 DFA variant: forward; union; set of assignments
 Transformations: use-def-chains, constant propagation, loop invariant computations
- Live variables: Is variable v alive at a given point p in the program, i. e. there is a path from p to the exit where v is used but not defined before the use.
 DFA variant: backward; union; set of variables
 Transformations: eliminate redundant assignments
- Available expressions: Is expression e computed on every path from the entry to a program position p and none of its variables is defined after the last computation before p. DFA variant: forward; intersect; set of expressions
 Transformations: eliminate redundant computations
- 4. Copy propagation: Is a copy assignment c: x = y redundant, i.e. on every path from c to a use of x there is no assignment to y?
 DFA variant: forward; intersect; set of copy assignments
 Transformations: remove copy assignments and rename use
- 5. Constant propagation: Has variable x at position p a known value, i.e. on every path from the entry to p the last definition of x is an assignment of the same known value. DFA variant: forward; combine function; vector of values Transformations: substitution of variable uses by constants

Algebraic Foundation of DFA

DFA performs computations on a **lattice (dt. Verband)** of values, e. g. bit-vectors representing finite sets. It guarantees termination of computation and well-defined solutions. see [Muchnick, pp 223-228]

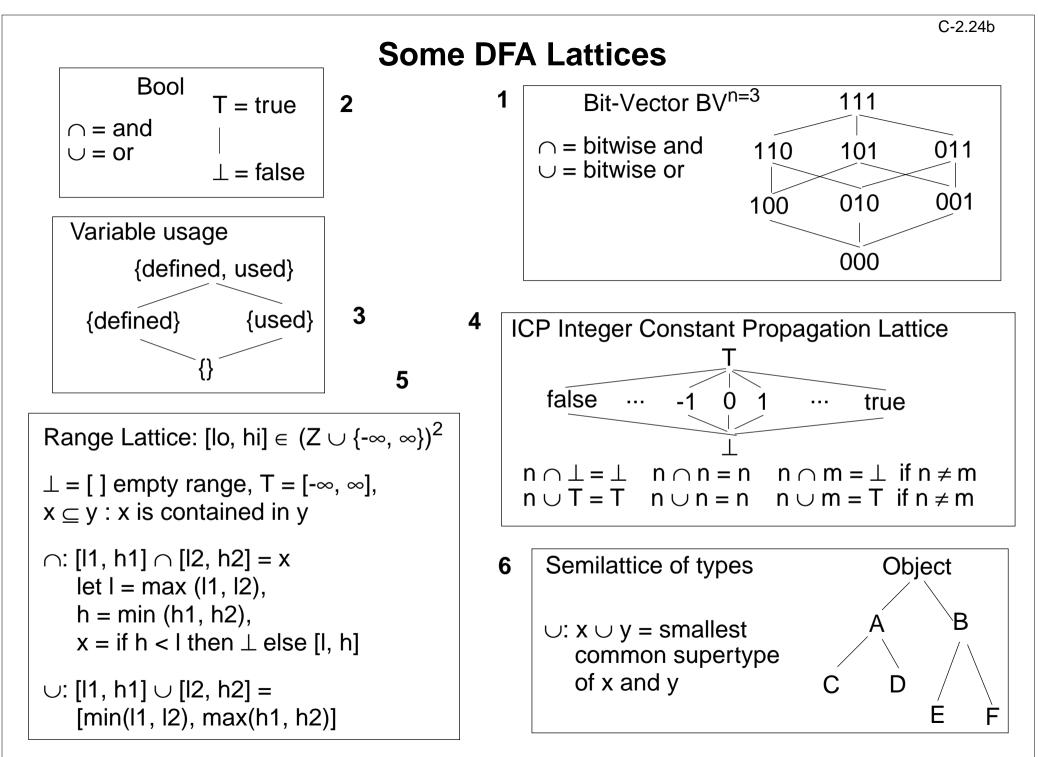
A lattice L is a set of values with two operations: \cap meet and \cup join

Required properties:

- 1. closure: $x, y \in L \text{ implies } x \cap y \in L, x \cup y \in L$
- 2. **commutativity**: $x \cap y = y \cap x$ and $x \cup y = y \cup x$
- 3. **associativity**: $(x \cap y) \cap z = x \cap (y \cap z)$ and $(x \cup y) \cup z = x \cup (y \cup z)$
- 4. absorption: $x \cap (x \cup y) = x = x \cup (x \cap y)$
- 5. unique elements **bottom** \bot , **top** T: $x \cap \bot = \bot$ and $x \cup T = T$

In most DFA problems only a **semilattice** is used with L, \cap , \perp or L, \cup , T

Partial orderdefined by meet,
 $X \subseteq Y: X \cap Y = X$ defined by join:
 $X \supseteq Y: X \cup Y = X$
(transitive, antisymmetric, reflexive)



© 2006 bei Prof. Dr. Uwe Kastens

Monotone Functions Over Lattices

The **effects of program constructs on DFA information** are described by functions over a suitable lattice,

e. g. the function for basic block B_3 on C-2.22:

 $f_3(<x_1 x_2 x_3 x_4 x_5 x_6 x_7 x_8>) = <x_1 x_2 0 x_4 1 x_6 0 x_8> \in \mathsf{BV}^8$

Gen-Kill pair encoded as function

 $\begin{array}{l} f: L \to L \text{ is a monotone function} \text{ over the lattice } L \text{ if} \\ \forall x, y \in L: x \subseteq y \Rightarrow f(x) \subseteq f(y) \end{array}$

Finite height of the lattice and **monotonicity** of the functions guarantee **termination** of the algorithms.

Fixed points z of the function f, with f(z) = z, is a solution of the set of DFA equations.

MOP: Meet over all paths solution is desired, i. e. the "best" with respect to L

MFP: Maximum fixed point is computed by algorithms, if functions are monotone

If the functions f are additionally **distributive**, then **MFP = MOP**. f: L \rightarrow L is a **distributive function** over the lattice L if $\forall x, y \in L$: f(x $\cap y$) = f(x) \cap f(y)

Variants of DFA Algorithms

Heuristic improvement:

Goal: propagate changes in the In and Out sets as fast as possible. Technique: visit CFG nodes in topological order in the outer for-loop {*}. Then the number of iterations of the outer repeat-loop is only determined by back edges in the CFG

Algorithm for backward problems:

Exchange In and Out sets symmetrically in the algorithm of C-2.22b. The nodes should be visited in topological order as if the directions of edges were flipped.

Hierarchical algorithms, interval analysis:

Regions of the CFG are considered nodes of a CFG on a higher level. That abstraction is recursively applied until a single root node is reached. The Gen, Kill sets are combined in upward direction; the In, Out sets are refined downward.

```
Program Analysis: Call Graph (context-insensitive)
                     defined functions
          Nodes:
          Arc g \rightarrow h: function g contains a call h(),
                     i. e. a call g() may cause the execution of a call h()
void a () \{...b()...c()...f()...\}
                                                                а
void b () {...d()...c()...}
void c() {...e()...}
void d() {...}
void e() {...v++;...b()...}
                                                       d
void f() {...d()...}
                                                 Analysis of structure:
                                                  b, c, e are recursive;
```

© 2013 bei Prof. Dr. Uwe Kastens

Propagation of properties:

assume a call e() may **modify a global variable** v then calls a(), b(), c() may indirectly cause modification of v

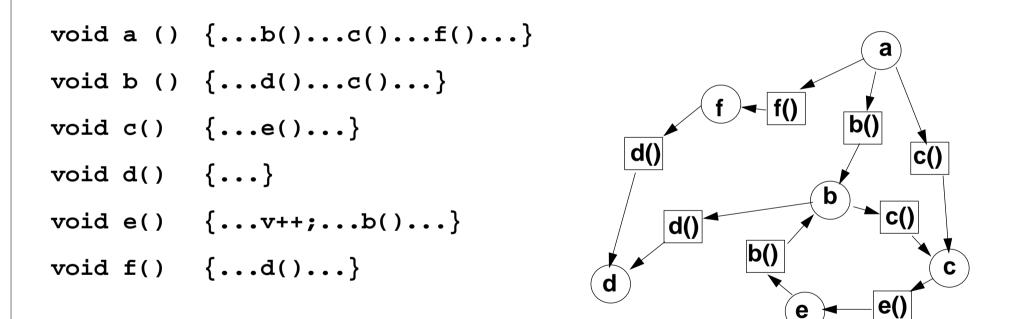
v = f(); cnt = 0; while(...){...b(); cnt += v;}

a, d, f are non-recursive

Program Analysis: Call Graph (context-sensitive)

Nodes: defined functions and calls (bipartite)

Arc g -> h: function g contains a call h(),i.e a call g() may cause the
 execution of a call h()
 or call g() leads to function g



Calls of the same function in different contexts are distinguished by different nodes, e.g. the call of c in a and in b.

Analysis can be more precise in that aspect.

Calls Using Function Variables

Contents of function variables is assigned at run-time.

Static analysis does not know (precisely) which function is called. **Call graph** has to assume that **any function may be called**.

void a()
{...(*h)(0.3, 27)...}
a f
a any
function
a
a
any
function
any
functio

- 2. are assigned somewhere in the
 - program
- 3. can be derived from the **reaching definitions** at the call

```
void m (int j) {...}
void g (float x, int i) {...}
...k = m;... f(g); ...
void a()
{ void (*h)(float,int) = g;
...
if(...) h = s;
...(*h)(0.3, 27)...
}
```

Analysis of Object-Oriented Programs

Aspects specific for object-oriented analysis:

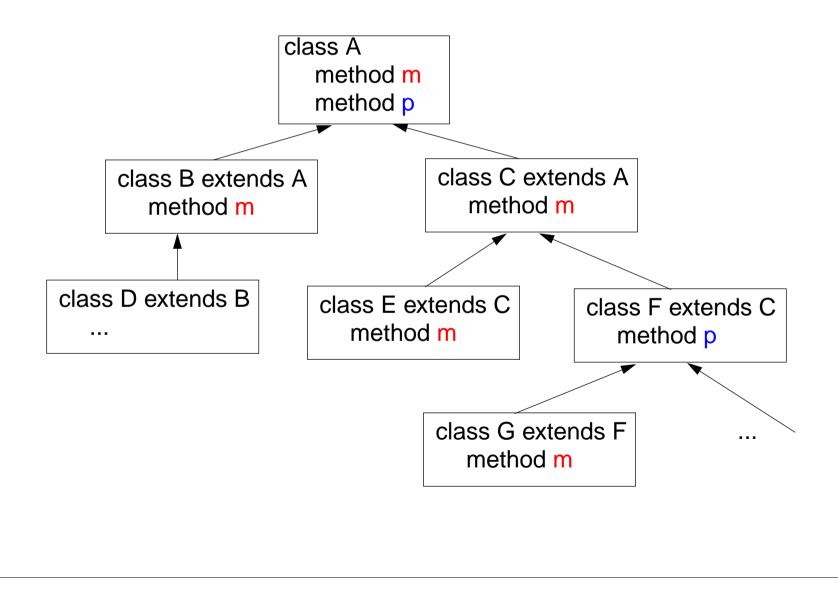
- 1. hierarchy of classes and interfaces specifies a complex system of subtypes
- 2. hierarchy of classes and interfaces specifies inheritance and overriding relation for methods
- dynamic method binding for method calls v.m(...) the callee is determined at run-time good object-oriented style relies on that feature
- 4. many small methods are typical object-oriented style
- 5. **library use and reuse of modules** complete program contains many **unused classes and methods**

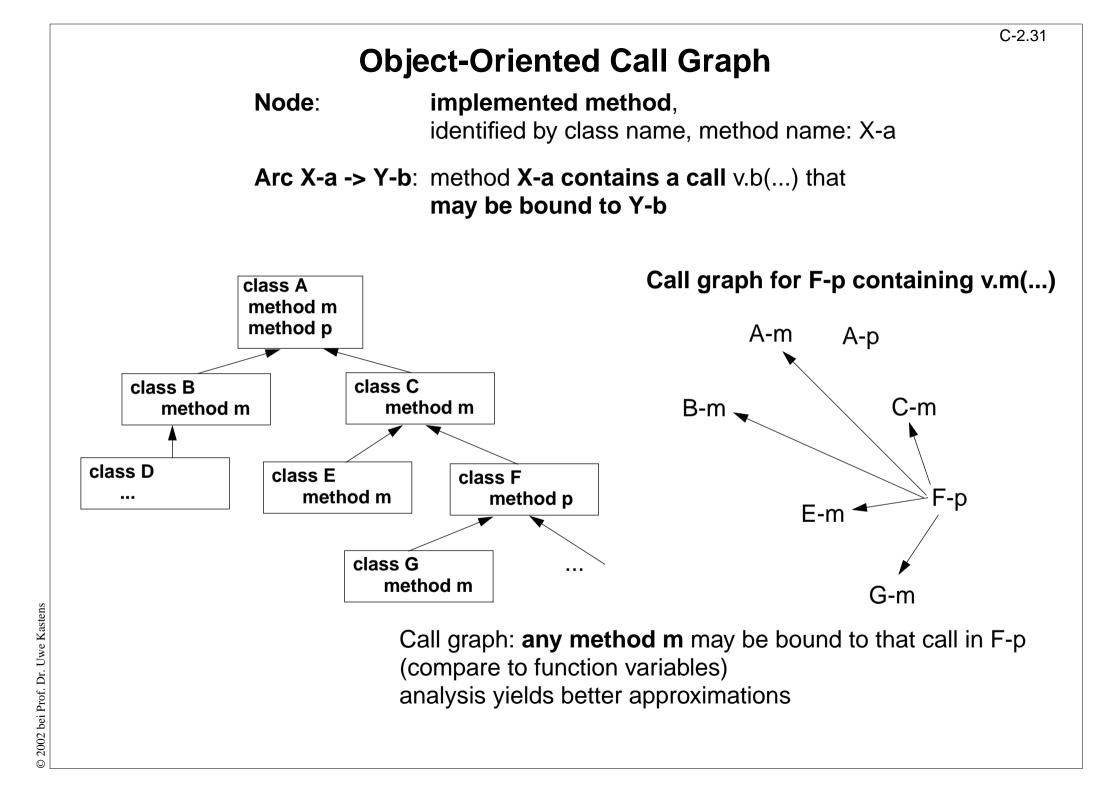
Static predictions for dynamically bound method calls

are essential for most analyses

Class Hierarchy Graph

- Node: class or interface
- Arc a -> b: a is subclass of b or a implements interface b



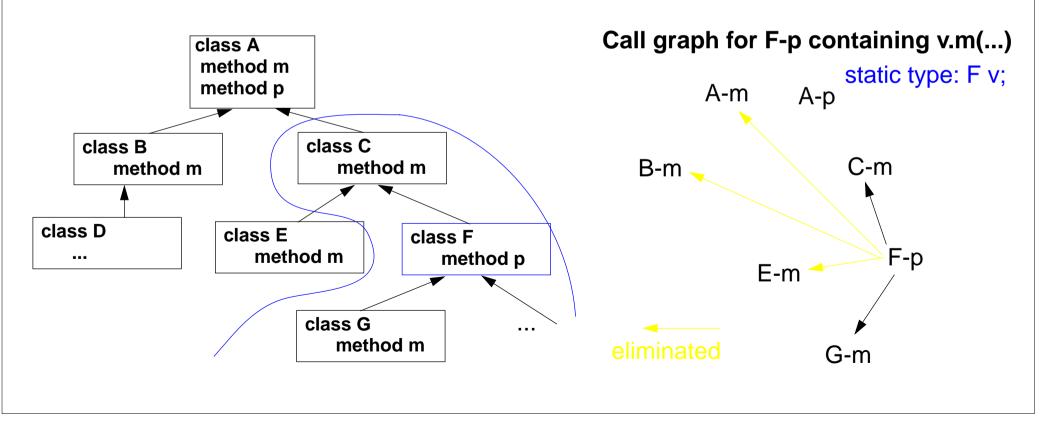


Call Graphs Constructed by Class Hierarchy Analysis (CHA)

The call graph is reduced to a set of **reachable methods** using the **class hierarchy** and the **static type of the receiver** expression in the call:

If a method F-p is reachable and if it contains a dynamically bound call v.m(...) and T is the static type of v,

then every method **m that is inherited by T or by a subtype of T is also reachable**, and arcs go from F-p to them.



Refined Approximations for Call Graph Construction

```
Class Hierarchy Analysis (CHA): (see C-2.32)
```

Rapid Type Analysis (RTA):

As CHA, but only methods of those classes C are considered which are instantiated (new C()) in a reachable method.

Reaching Type Analysis:

Approximations of run-time types is propagated through a graph: nodes represent variables, arcs represent copy assignments.

Declared Type Analysis:

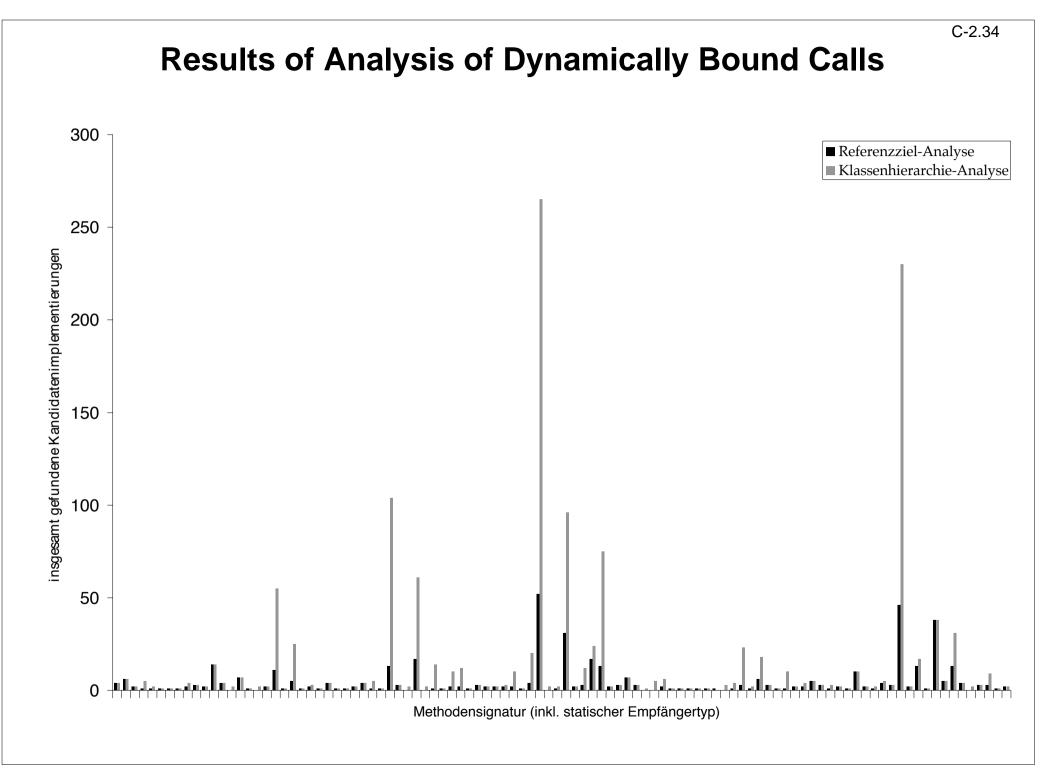
one node T represents all variables declared to have type T

Variable Type Analysis:

one node V represents a single variable

Points-to Analysis:

Information on object identities is propagated through the control-flow graph



Modules of a Toolset for Program Analysis

analysis module	purpose	category
ClassMemberVisibility	examines visibility levels of declarations	
MethodSizeStatistics	examines length of method implementations in bytecode operations and frequency of different bytecode operations	
ExternalEntities	histogram of references to program entities that reside outside a group of classes	visualization
InheritanceBoundary	histogram of lowest superclass outside a group of classes	
SimpleSetterGetter	recognizes simple access methods with bytecode patterns	
MethodInspector	decomposes the raw bytecode array of a method implementation into a list of instruction objects	auxiliary analysis
ControlFlow	builds a control flow graph for method implementations	fundamental analyses
Dominator	constructs the dominator tree for a control flow graph	
Loop	uses the dominator tree to augment the control flow graph with loop and loop nesting information	
InstrDefUse	models operand accesses for each bytecode instruction	
LocalDefUse	builds intraprocedural def/use chains	
LifeSpan	analyzes lifeness of local variables and stack locations	
DefUseTypeInfo	infers type information for operand accesses	
Hierarchy	class hierarchy analysis based on a horizontal slice of the hierarchy	
PreciseCallGraph	builds call graph based on inferred type information, copes with incomplete class hierarchy	analysis of incomplete programs
ParamEscape	transitively traces propagation of actual parameters in a method call (escape = leaves analyzed library)	
ReadWriteFields	transitive liveness and access analysis for instance fields accessed by a method call	

Table 0-1. Analysis plug-ins in our framework

[Michael Thies: Combining Static Analysis of Java Libraries with Dynamic Optimization, Dissertation, Shaker Verlag, April 2001]

© 2002 bei Prof. Dr. Uwe Kastens