Data-Flow Analysis

Data-flow analysis (DFA) provides information about how the execution of a program may manipulate its data.

Many different problems can be formulated as data-flow problems, for example:

- Which assignments to variable \mathbf{v} may influence a use of \mathbf{v} at a certain program position?
- Is a variable v used on any path from a program position p to the exit node?
- The values of which expressions are available at program position \mathbf{p} ?

Data-flow problems are stated in terms of

- paths through the control-flow graph and
- properties of basic blocks.

Data-flow analysis provides information for global optimization.

Data-flow analysis does not know

- which input values are provided at run-time,
- which branches are taken at run-time.

Its results are to be interpreted pessimistic

Data-Flow Equations

A data-flow problem is stated as a system of equations for a control-flow graph.
System of Equations for forward problems (propagate information along control-flow edges):

Example Reaching definitions:
A definiton d of a variable v reaches the begin of a block B if
there is a path from d to B on which \mathbf{v} is not assigned again

In, Out, Gen, Kill represen

analysis information:
sets of statements
sets of variables,
sets of expressions
depending on the analysis problem
2 equations for each basic block:

$$
\text { Out } \begin{aligned}
(B) & =f_{B}(\ln (B)) \\
& =\operatorname{Gen}(B) \cup(\ln (B)-\text { Kill }(B))
\end{aligned}
$$

$$
\text { In }(B)=\underset{h \in \underset{\operatorname{pred}(B)}{\Theta}}{ } \text { Out (h) }
$$

In, Out variables of the system of equations for each block
Gen, Kill a pair of constant sets that characterize a block w.r.t. the DFA problem Θ meet operator; e. g. $\Theta=\cup$ for „reaching definitions", $\Theta=\cap$ for „available expressions"

Variants of DFA Problems

- forward problem

DFA information flows along the control flow
$\ln (\mathrm{B})$ is determined by Out (h) of the predecessor blocks
backward problem (see C-2.23):
DFA information flows against the control flow
Out(B) is determined by $\ln (\mathrm{h})$ of the successor blocks

- union problem:
problem description: „there is a path";
meet operator is $\Theta=\cup$
solution: minimal sets that solve the equations
intersect problem:
problem description: „for all paths"
meet operator is $\Theta=?$
solution: maximal sets that solve the equations
- optimization information: sets of certain statements, of variables, of expressions

Further classes of DFA problems over general lattices instead of sets are not considered here.

Example Reaching Definitions

Description of DFA-Problem
Gen

B_{1}	d_{1}, d_{2}, d_{3}	$d_{4}, d_{5}, d_{6}, d_{7}, d_{8}$
B_{2}	d_{4}	d_{2}, d_{6}
B_{3}	d_{5}	d_{3}, d_{7}
B_{4}	d_{6}, d_{7}	$d_{2}, d_{3}, d_{4}, d_{5}$
B_{5}	d_{8}	d_{1}

Iterative Solution of Data-Flow Equations

Input: the CFG; the sets $\operatorname{Gen}(\mathrm{B})$ and $\operatorname{Kill}(\mathrm{B})$ for each basic block B Output: the sets $\operatorname{In}(B)$ and $\operatorname{Out}(B)$

> Initialization Union: empty sets for all B do begin In (B) $:=\varnothing$; Out (B) $:=$ Gen (B) end; Intersect: full sets for all B do begin In (B) $:=\mathrm{U} ;$ Out (B) $:=$ Gen (B) \cup end; $\quad \begin{aligned} & \text { (U Kill (B)) }\end{aligned}$

Complexity: $\mathrm{O}\left(\mathrm{n}^{3}\right)$ with n number of basic blocks
$O\left(n^{2}\right)$ if $|\operatorname{pred}(B)| \leq k \ll n$ for all B

Backward Problems

System of Equations for backward problems
propagate information against control-flow edges:

2 equations for each basic block:

Example Live variables:

1. Description: Is variable \mathbf{v} alive at a given point p in the program, i. e. is there a path from p to the exit where v is used but not defined before the use?
2. backward problem
3. optimization information: sets of variables
4. meet operator: $\Theta=\cup$ union

5. Gen (B) : variables that are used in B, but not defined before they are used there.
6. Kill (B): variables that are defined in B, but not used before they are defined there.

Algebraic Foundation of DFA

DFA performs computations on a lattice (dt. Verband) of values,
e. g. bit-vectors representing finite sets. It guarantees termination of computation and well-defined solutions. see [Muchnick, pp 223-228]

A lattice L is a set of values with two operations: \cap meet and \cup join
Required properties:

1. closure: $\quad x, y \in L$ implies $x \cap y \in L, x \cup y \in L$
2. commutativity: $x \cap y=y \cap x$ and $x \cup y=y \cup x$
3. associativity: $(x \cap y) \cap z=x \cap(y \cap z)$ and $(x \cup y) \cup z=x \cup(y \cup z)$
4. absorption: $\quad x \cap(x \cup y)=x=x \cup(x \cap y)$
5. unique elements bottom \perp, top T :

$$
\mathrm{x} \cap \perp=\perp \text { and } \mathrm{x} \cup \mathrm{~T}=\mathrm{T}
$$

In most DFA problems only a semilattice is used with L, \cap, \perp or L, \cup, T

$$
\begin{array}{lll}
\text { Partial order } & \text { defined by meet, } & \text { defined by join: } \\
& x \subseteq y: x \cap y=x & x \supseteq y: x \cup y=x \\
& \text { (transitive, antisymmetric, reflexive) }
\end{array}
$$

Monotone Functions Over Lattices

The effects of program constructs on DFA information are described by functions over a suitable lattice,
e. g. the function for basic block B_{3} on C-2.22:

$$
f_{3}\left(<x_{1} x_{2} x_{3} x_{4} x_{5} x_{6} x_{7} x_{8}>\right)=\left\langle x_{1} x_{2} 0 x_{4} 1 x_{6} 0 x_{8}>\in B V^{8}\right.
$$

Gen-Kill pair encoded as function

$f: L \rightarrow L$ is a monotone function over the lattice L if

$$
\forall x, y \in L: x \subseteq y \Rightarrow f(x) \subseteq f(y)
$$

Finite height of the lattice and monotonicity of the functions guarantee termination of the algorithms.

Fixed points z of the function f, with $f(z)=z$, is a solution of the set of DFA equations
MOP: Meet over all paths solution is desired, i. e. the „best" with respect to L
MFP: Maximum fixed point is computed by algorithms, if functions are monotone
If the functions f are additionally distributive, then MFP = MOP.
$f: L \rightarrow L$ is a distributive function over the lattice L if
$\forall x, y \in L: f(x \cap y)=f(x) \cap f(y)$

Some DFA Lattices

Bool	T = true
$n=$ and	
$\cup=$ or	\perp = false

Variable usage
\{defined, used\}
\{defined $\}$

5
Range Lattice: $[\mathrm{lo}, \mathrm{hi}] \in(\mathrm{Z} \cup\{-\infty, \infty\})^{2}$
$\perp=$ [] empty range, $T=[-\infty, \infty]$,
$x \subseteq y: x$ is contained in y
$\cap:[11, \mathrm{~h} 1] \cap[12, \mathrm{~h} 2]=\mathrm{x}$ let $\mathrm{I}=\max (11,12)$,
$\mathrm{h}=\min (\mathrm{h} 1, \mathrm{~h} 2)$,
$x=$ if $h<1$ then \perp else $[l, h]$
$\cup:[11, \mathrm{~h} 1] \cup[12, \mathrm{~h} 2]=$ $[\min (11, \mid 2), \max (h 1, h 2)]$

4

4 ICP Integer Constant Propagation Lattice
false $\cdots \cdots$
$\mathrm{n} \cap \perp=\perp \quad \mathrm{n} \cap \mathrm{n}=\mathrm{n} \quad \mathrm{n} \cap \mathrm{m}=\perp$ if $\mathrm{n} \neq \mathrm{m}$ $n \cup T=T \quad n \cup n=n \quad n \cup m=T \quad$ if $n \neq m$

Variants of DFA Algorithms

Heuristic improvement:

Goal: propagate changes in the In and Out sets as fast as possible.
Technique: visit CFG nodes in topological order in the outer for-loop \{*\}.
Then the number of iterations of the outer repeat-loop is only determined. by back edges in the CFG

Algorithm for backward problems:

Exchange In and Out sets symmetrically in the algorithm of C-2.22b
The nodes should be visited in topological order as if the directions of edges were flipped.

Hierarchical algorithms, interval analysis

Regions of the CFG are considered nodes of a CFG on a higher level. That abstraction is recursively applied until a single root node is reached The Gen, Kill sets are combined in upward direction
the In , Out sets are refined downward

Program Analysis: Call Graph (context-insensitive)

Nodes: defined functions

Arc $g->h$: function g contains a call $h()$,
i. e. a call $g()$ may cause the execution of a call $h()$
void a () \{...b()...c()...f()...\}
void b () \{...d()...c()...\}
void c() \{...e()...\}
void $d() \quad\{\ldots\}$
void e() \{...v++; ...b()...\}

void $f() \quad\{. . . d() . .$.
Analysis of structure
b, c, e are recursive,
a, d, f are non-recursive

Propagation of properties:
assume a call e() may modify a global variable v
then calls $a(), b(), c()$ may indirectly cause modification of v
v = f(); cnt = 0; while(...)\{...b(); cnt += v; \}

Program Analysis: Call Graph (context-sensitive)

Nodes: defined functions and calls (bipartite)

Arc $\mathrm{g}->\mathrm{h}$: function g contains a call h() , i.e a call g() may cause the execution of a call h() or call g() leads to function g
void a () \{...b()...c()...f()...\}
void b () \{...d()...c()...\}
void $c() \quad\{. . . e() . .$.
void $d() \quad\{. .$.
void e() \{...v++; ...b()...\}
void f() \{...d()...\}

Calls of the same function in different contexts are distinguished by different nodes, e.g. the call of c in a and in b

Analysis can be more precise in that aspect.

Calls Using Function Variables

Contents of function variables is assigned at run-time.

Static analysis does not know (precisely) which function is called.
Call graph has to assume that any function may be called

$$
\begin{aligned}
& \text { void a() } \\
& \qquad\{\ldots(* h)(0.3,27) \ldots\}
\end{aligned}
$$

Analysis for a better approximation of potential callees:
only those functions which

1. fit to the type of h
2. are assigned somewhere in the program
3. can be derived from the reaching definitions at the call

$$
\begin{aligned}
& \text { void } m \text { (int } j)\{\ldots\} \\
& \text { void } g(f l o a t ~ \\
& x, \text { int i) }\{\ldots\} \\
& \ldots k=m ; \ldots f(g) ; \ldots \\
& \text { void a() } \\
& \quad\{\text { void (*h) (float,int) }=g ; \\
& \quad \ldots \\
& \quad \text { if(...) } h=s ; \\
& \quad \ldots(* h)(0.3,27) \ldots
\end{aligned}
$$

Analysis of Object-Oriented Programs

Aspects specific for object-oriented analysis:

1. hierarchy of classes and interfaces specifies a complex system of subtypes
2. hierarchy of classes and interfaces specifies inheritance and overriding relation for methods
3. dynamic method binding
for method calls v.m (. .) the callee is determined at run-time good object-oriented style relies on that feature
4. many small methods are typical object-oriented style
5. library use and reuse of modules
complete program contains many unused classes and methods

Static predictions for dynamically bound method calls are essential for most analyses

Call Graphs Constructed by Class Hierarchy Analysis (CHA)

The call graph is reduced to a set of reachable methods using the
class hierarchy and the static type of the receiver expression in the call:
If a method $F-p$ is reachable and
if it contains a dynamically bound call v.m(...) and
T is the static type of v,
then every method m that is inherited by \mathbf{T} or by a subtype of \mathbf{T}
is also reachable, and arcs go from F-p to them.

Call graph for F-p containing v.m(...) static type: F v;
A-m

Results of Analysis of Dynamically Bound Calls

analysis module	purpose	category
ClassMemberVisibility	examines visibility levels of declarations	visualization
MethodSizeStatistics	examines length of method implementations in bytecode operations and frequency of different bytecode operations	
ExternalEntities	histogram of references to program entities that reside outside a group of classes	
InheritanceBoundary	histogram of lowest superclass outside a group of classes	
SimplesetterGetter	recognizes simple access methods with bytecode patterns	
Methodinspector	decomposes the raw bytecode array of a method implementation into a list of instruction objects	auxiliary analysis
ControlFlow	builds a control flow graph for method implementations	fundamental analyses
Dominator	constructs the dominator tree for a control flow graph	
Loop	uses the dominator tree to augment the control flow graph with loop and loop nesting information	
InstrDefuse	models operand accesses for each bytecode instruction	
LocalDefuse	builds intraprocedural def/ use chains	
LifeSpan	analyzes lifeness of local variables and stack locations	
DefuseTypeInfo	infers type information for operand accesses	analysis of incomplete programs
Hierarchy	class hierarchy analysis based on a horizontal slice of the hierarchy	
PreciseCallGraph	builds call graph based on inferred type information, copes with incomplete class hierarchy	
ParamEscape	transitively traces propagation of actual parameters in a method call (escape $=$ leaves analyzed library)	
ReadWriteFields	transitive liveness and access analysis for instance fields accessed by a method call	

Table 0-1. Analysis plug-ins in our framework
[Michael Thies: Combining Static Analysis of Java Libraries with Dynamic Optimization, Dissertation, Shaker Verlag, April 2001]

