Compilation Methods

Prof. Dr. Uwe Kastens **Summer 2013**

Syllabus Week Chapter Topic 1 Introduction Compiler structure 2 Optimization 2 Control-flow analysis Loop optimization Data-flow analysis 4.5 Object oriented program analysis

Overview: Data structures, program transformations 3 Code generation Storage mapping Run-time stack, calling sequence 8 Translation of control structures 9 Code selection by tree pattern matching 10, 11 4 Register allocation Expression trees (Sethi/Ullman) Basic blocks (Belady) Control flow graphs (graph coloring) 5 Code Parallelization Data dependence graph 13 Instruction Scheduling Loop parallelization 14 Summary

1 Introduction

Objectives

The students are going to learn

- what the main tasks of the synthesis part of optimizing compilers are,
- how data structures and algorithms solve these tasks systematically,
- what can be achieved by program analysis and optimizing transformations.

Prerequisites

- Constructs and properties of programming languages
- What does a compiler know about a program?
- How is that information represented?
- Algorithms and data structures of the analysis parts of compilers (frontends)

Main aspects of the lecture *Programming Languages and Compilers* (PLaC, BSc program) http://ag-kastens.upb.de/lehre/material/plac

References

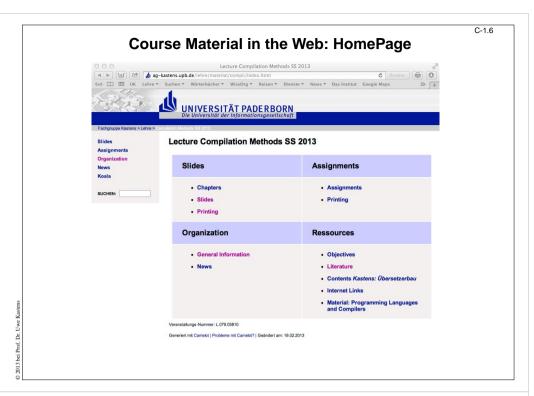
Course material:

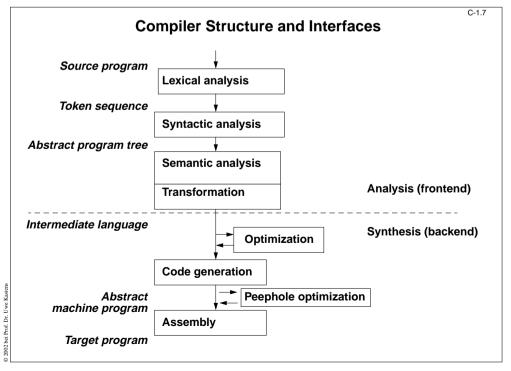
Compilation Methods: http://ag-kastens.upb.de/lehre/material/compii

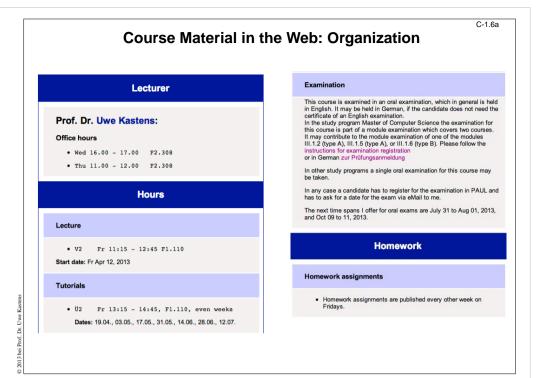
Programming Languages and Compilers: http://ag-kastens.upb.de/lehre/material/plac

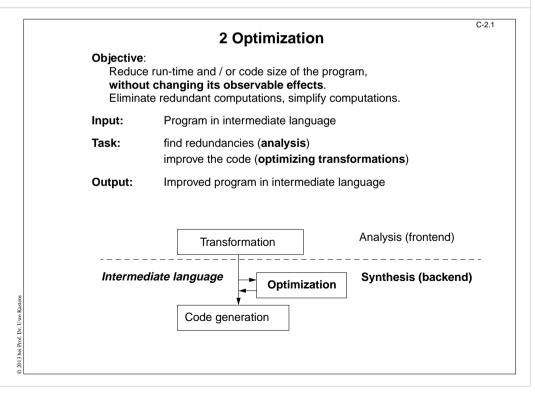
Books:

- U. Kastens: Übersetzerbau, Handbuch der Informatik 3.3, Oldenbourg, 1990; (sold out)
- K. Cooper, L. Torczon: Engineering A Compiler, Morgan Kaufmann, 2003
- S. S. Muchnick: Advanced Compiler Design & Implementation, Morgan Kaufmann Publishers, 1997
- A. W. Appel: Modern Compiler Implementation in C, 2nd Edition Cambridge University Press, 1997, (in Java and in ML, too)
- W. M. Waite, L. R. Carter: An Introduction to Compiler Construction, Harper Collins, New York, 1993
- M. Wolfe: High Performance Compilers for Parallel Computing, Addison-Wesley, 1996
- A. V. Aho, M. S. Lam, R. Sethi, J. D. Ullman: Compilers Principles, Techniques, & Tools, 2nd Ed, Pearson International Edition (Paperback), and Addison-Wesley, 2007









Overview on Optimizing Transformations

Name of transformation: Example for its application:

1. Algebraic simplification of expressions

 $2*3.14 \Rightarrow 6.28 x+0 \Rightarrow x x*2 \Rightarrow$ shift left $x**2 \Rightarrow x*x$

2. **Constant propagation** (dt. Konstantenweitergabe) constant values of variables propagated to uses:

x = 2i ... y = x * 5i

3. Common subexpressions (gemeinsame Teilausdrücke)

avoid re-evaluation, if values are unchanged x = a*(b+c);...y = (b+c)/2;

4. **Dead variables** (überflüssige Zuweisungen) eliminate redundant assignments

 $x = a + bi \dots x = 5i$

5. **Copy propagation** (überflüssige Kopieranweisungen) substitute use of x by y

 $x = vi \dots i z = xi$

6. **Dead code** (nicht erreichbarer Code)

eliminate code, that is never executed b = true; ... if (b) x = 5; else y = 7;

Program Analysis for Optimization

Static analysis:

static properties of program structure and of every execution; safe, pessimistic assumptions

where input and dynamic execution paths are not known

Context of analysis - the larger the more information:

local optimization Expression

Basic block local optimization

procedure (control flow graph) global intra-procedural optimization

program module (call graph) global inter-procedural optimization

separate compilation

complete program

optimization at link-time or at run-time

Analysis and Transformation:

Analysis provides preconditions for applicability of transformations

Transformation may change analysed properties, may inhibit or enable other transformations

Order of analyses and transformations is relevant

Overview on Optimizing Transformations (continued)

Name of transformation:

Example for its application:

C-2.2a

7. Code motion (Code-Verschiebung)

move computations to cheaper places if (c) x = (a+b)*2; else x = (a+b)/2;

8. Function inlining (Einsetzen von Aufrufen) substitute call of small function by a computation over the arguments

int Sqr (int i) { return i * i; } x = Sar (b*3)

9. Loop invariant code

move invariant code before the loop

while (b) $\{... x = 5; ...\}$

10.Induction variables in loops

transform multiplication into i = 1; while (b) { k = i*3; f(k); i = i+1; } incrementation

Program Analysis in General

Program text is systematically analyzed to exhibit structures of the program, properties of program entities, relations between program entities.

Objectives:

Compiler:

Software engineering tools: Code improvement program understanding

automatic parallelization

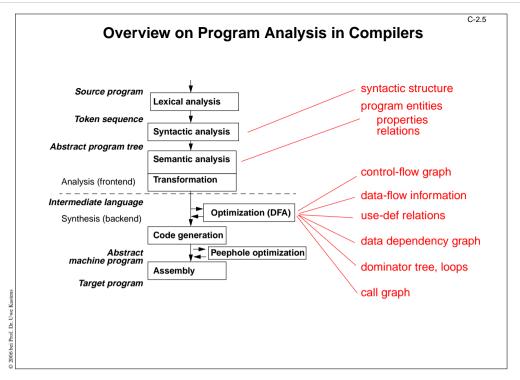
software maintenance

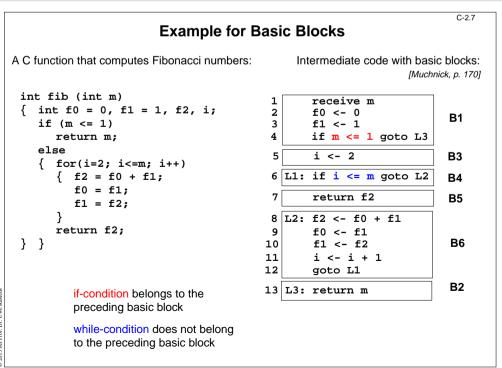
· automatic allocation of threads

evaluation of software qualities

reengineering, refactoring

Methods for program analysis stem from compiler construction





Basic Blocks

Basic Block (dt. Grundblock):

Maximal sequence of instructions that can be entered only at the first of them and exited only from the last of them.

Begin of a basic block:

- procedure entry
- · target of a branch
- instruction after a branch or return (must have a label)

Function calls

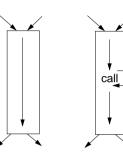
are usually not considered as a branch, but as operations that have effects

Local optimization

considers the context of one single basic block (or part of it) at a time.

Global optimization:

Basic blocks are the nodes of control-flow graphs.



C-2.8

C-2.6

Control-Flow Graph (CFG)

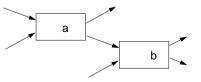
A **control-flow graph, CFG** (dt. Ablaufgraph) represents the control structure of a function

Nodes: basic blocks and 2 unique nodes entry and exit.

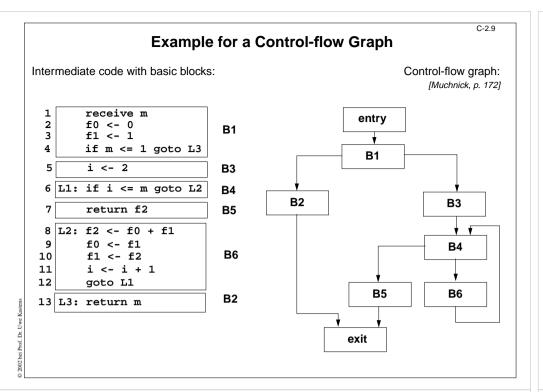
Edge a -> b: control may flow from the end of a to the begin of b

Fundamental data structure for

- control flow analysis
- · structural transformations
- code motion
- data-flow analysis (DFA)



f. Dr. Uwe Kastens



Dominator Relation on CFG

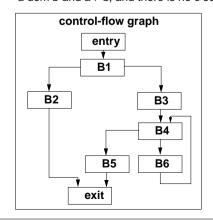
Relation over nodes of a CFG, characterizes paths through CFG, used for loop recognition, code motion

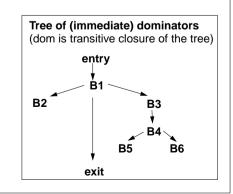
a dominates b (a dom b):

a is on every path from the entry node to b (reflexive, transitive, antisymmetric)

a is immediate dominator of b (a idom b):

a dom b and $a \neq b$, and there is no c such that $c \neq a$, $c \neq b$, a dom c, c dom b.





Control-Flow Analysis

Compute properties on the control-flow based on the CFG:

- dominator relations: properties of paths through the CFG
- loop recognition: recognize loops - independent of the source language construct
- hierarchical reduction of the CFG:
 a region with a unique entry node on the one level is a node of the next level graph

Apply **transformations** based on control-flow information:

- dead code elimination:
 eliminate unreachable subgraphs of the CFG
- code motion: move instructions to better suitable places
- loop optimization:
 loop invariant code, strength reduction, induction variables

Immediate Dominator Relation is a Tree

Every node has a unique immediate dominator.

The dominators of a node are linearly ordered by the idom relation.

Proof by contradiction:

Assume:

 $a \neq b$, a dom n, b dom n and not (a dom b) and not (b dom a)

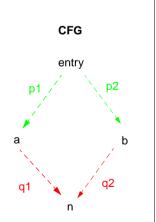
Then there are pathes in the CFG

- p1: from entry to a not touching b, since not (b dom a)
- p2: from entry to b not touching a, since not (a dom b)
- q1: from a to n not touching b, since a dom n and not (a dom b)
- q2: from b to n not touching a, since b dom n and not (b dom a)

Hence, there is a path p1-q1 from entry via a to n not touching b.

That is a contradiction to the assumption b dom n.

Hence, n has a unique immediate dominator, either a or b.



Dominator Computation

Algorithm computes the sets of dominators Domin(n) for all nodes $n \in N$ of a CFG:

```
for each n \in N do Domin(n) = N;
Domin(entry) = {entry};
repeat
   for each n∈N-{entry} do
     T = N:
     for each p∈pred(n) do
        T = T \cap Domin(p);
     Domin(n) = \{n\} \cup T;
until Domin is unchanged
```

Symmetric relation for backward analysis:

a postdominates b (a pdom b):

a is on every path from b to the exit node (reflexive, transitive, antisymmetric)

Loop Recognition: Natural Loops

Back edge t->h in a CFG: head h dominates tail t (h dom t).

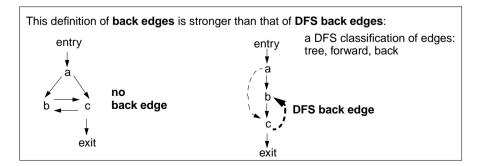
Natural loop of a back edge t->h:

set S of nodes such that S contains h. t and all nodes from which t can be reached without passing through h. h is the loop header.

Iterative computation of the natural loop for t->h:

add predecessors of nodes in S according to the formula:

$$S = \{h, t\} \cup \{p \mid \exists a (a \in S \setminus \{h\} \land p \in pred(a))\}$$



Example for Loop Recognition

back edge: natural loop:

4 -> 3

 $S_1 = \{3,4\}$

6 -> 2

 $S_2 = \{2, 3, 4, 5, 6\}$

7 -> 2

 $S_3 = \{2, 3, 4, 5, 7\}$

6 -> 6

 $S_4 = \{6\}$

loops are

disjoint

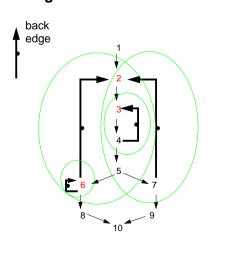
 $S_1 \cap S_4 = \emptyset$

nested

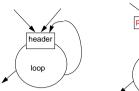
 $S_1 \subset S_2$

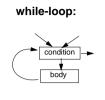
non-nested,

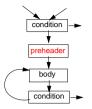
but have the same loop header, are comprised into one loop



Introduce a preheader for a loop, as a place for loop invariant computations:
 a new, empty basic block that lies on every path to the loop header, but is not iterated:







- move loop invariant computations to the preheader: check use-def-chains: if an expression E contains no variables that are defined in the loop, then replace E by a temporary variable t, and compute t = E; in the preheader.
- eliminate redundant bounds-checks: propagate value intervals using the same technique as for constant propagation (see DFA) Example in Pascal:

```
var a: array [1..10] of integer;
    i: integer;
for i := 1 to 10 do a[i] := i;
```

• induction variables, strength reduction: see next slide

C-2.17

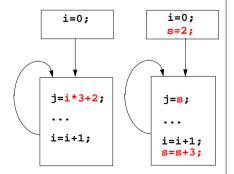
Transformation of Induction Variables

Transformation of dependent induction variables:

1. For each (i, a, b) create a temporary variable s.

j: (i, 3, 2)

- 2. Initialize s = i * a + b; in the preheader.
- 3. Replace i * a + b in the loop by s.
- 4. Add s = s + c*a; behind the increment of i



Strength reduction:

Replace a costly operation (multiplication) by a cheaper one (addition).

Linear increment of array address computation (next slide)

Induction variables may occur in any loop - not only in for loops.

Induction variable i:

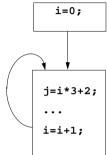
i is incremented (decremented) by a constant value c on every iteration.

Basic induction variable i:

There is exactly one definition i = i + c; or i = i - c; that is executed on every path through the loop.

Dependent induction variable i:

j depends on induction variable i by a linear function i * a + b represented by (i, a, b).



Examples for Transformations of Induction Variable

```
do
    k = i*3+1;
    f (5*k);
    /* x = a[i]; compiled: */
    x = cont(start+i*elsize);
    i = i + 2;
    while (Ek)

basic induction variable:
    i: c = 2
    dependent induction variables:
    k: (i, 3, 1)
    arg: (k, 5, 0)
    ind: (i, elsize, start)
```

sk = i*3+1;
sarg = sk*5;
sind = start + i*elsize;
do
 k = sk;
 f (sarg);
 x = cont (sind);
 i = i + 2;
 sk = sk + 6;
 sarg = sarg + 30;
 sind = sind + 2*elsize;
while (E_k)