# Compilation Methods 

Prof. Dr. Uwe Kastens
Summer 2013

## 1 Introduction

## Objectives

The students are going to learn

- what the main tasks of the synthesis part of optimizing compilers are,
- how data structures and algorithms solve these tasks systematically,
- what can be achieved by program analysis and optimizing transformations,


## Prerequisites

- Constructs and properties of programming languages
- What does a compiler know about a program?
- How is that information represented?
- Algorithms and data structures of the analysis parts of compilers (frontends)

Main aspects of the lecture Programming Languages and Compilers (PLaC, BSc program) http://ag-kastens.upb.de/lehre/material/plac

## Syllabus

1314Week

Chapter11 Introduction2 Optimization234, 5678910, 114 Register allocation12

1 Introduction
2 Optimization


6
3 Code generation


5 Code Parallelization

Topic
Compiler structure
Overview: Data structures, program transformations
Control-flow analysis
Loop optimization
Data-flow analysis
Object oriented program analysis
Storage mapping
Run-time stack, calling sequence
Translation of control structures
Code selection by tree pattern matching
Expression trees (Sethi/Ullman)
Basic blocks (Belady)
Control flow graphs (graph coloring)
Data dependence graph
Instruction Scheduling
Loop parallelization
Summary

## References

Course material:
Compilation Methods: http://ag-kastens.upb.de/lehre/material/compii
Programming Languages and Compilers: http://ag-kastens.upb.de/lehre/material/plac

Books:
U. Kastens: Übersetzerbau, Handbuch der Informatik 3.3, Oldenbourg, 1990; (sold out)
K. Cooper, L. Torczon: Engineering A Compiler, Morgan Kaufmann, 2003
S. S. Muchnick: Advanced Compiler Design \& Implementation, Morgan Kaufmann Publishers, 1997
A. W. Appel: Modern Compiler Implementation in C, 2nd Edition Cambridge University Press, 1997, (in Java and in ML, too)
W. M. Waite, L. R. Carter: An Introduction to Compiler Construction, Harper Collins, New York, 1993
M. Wolfe: High Performance Compilers for Parallel Computing, Addison-Wesley, 1996
A. V. Aho, M. S. Lam, R. Sethi, J. D. Ullman: Compilers - Principles, Techniques, \& Tools, 2nd Ed, Pearson International Edition (Paperback), and Addison-Wesley, 2007

## Course Material in the Web: HomePage



## Course Material in the Web: Organization

## Lecturer

## Prof. Dr. Uwe Kastens:

## Office hours

- Wed 16.00 - 17.00 F2.308
- Thu 11.00 - 12.00 F2. 308


## Hours

## Lecture

- V2 Fr 11:15 - 12:45 F1.110

Start date: Fr Apr 12, 2013

## Tutorials

- Ü2 Fr 13:15-14:45, F1.110, even weeks

Dates: 19.04., 03.05., 17.05., 31.05., 14.06., 28.06., 12.07.

## Examination

This course is examined in an oral examination, which in general is held in English. It may be held in German, if the candidate does not need the certificate of an English examination.
In the study program Master of Computer Science the examination for this course is part of a module examination which covers two courses.
It may contribute to the module examination of one of the modules III.1.2 (type A), III.1.5 (type A), or III.1.6 (type B). Please follow the instructions for examination registration
or in German zur Prüfungsanmeldung
In other study programs a single oral examination for this course may be taken.

In any case a candidate has to register for the examination in PAUL and has to ask for a date for the exam via eMail to me.

The next time spans I offer for oral exams are July 31 to Aug 01, 2013, and Oct 09 to 11, 2013.

## Homework

## Homework assignments

- Homework assignments are published every other week on Fridays.


## Compiler Structure and Interfaces



## 2 Optimization

Objective:
Reduce run-time and / or code size of the program, without changing its observable effects.
Eliminate redundant computations, simplify computations.
Input: Program in intermediate language
Task: find redundancies (analysis) improve the code (optimizing transformations)

Output: Improved program in intermediate language


## Overview on Optimizing Transformations

Name of transformation:
Example for its application:

1. Algebraic simplification of expressions

$$
2 * 3.14=>6.28 \quad x+0 \Rightarrow x \quad x * 2 \Rightarrow \text { shift left } x * * 2 \Rightarrow x^{*} x
$$

2. Constant propagation (dt. Konstantenweitergabe) constant values of variables propagated to uses:
```
x = 2; ... y = x * 5;
```

3. Common subexpressions (gemeinsame Teilausdrücke) avoid re-evaluation, if values are unchanged
```
x = a* (b+c);...y = (b+c)/2;
```

4. Dead variables (überflüssige Zuweisungen) eliminate redundant assignments

$$
x=a+b ; \ldots x=5 ;
$$

5. Copy propagation (überflüssige Kopieranweisungen)
substitute use of $x$ by $y$
x = y; ... ; z = x;
6. Dead code (nicht erreichbarer Code)
eliminate code, that is never executed $b=$ true; ...if (b) $x=5$; else $y=7$;

## Overview on Optimizing Transformations (continued)

Name of transformation:
Example for its application:
7. Code motion (Code-Verschiebung) move computations to cheaper places

```
if (c) x = (a+b)*2; else x = (a+b)/2;
```

8. Function inlining (Einsetzen von Aufrufen) substitute call of small function by a int Sqr (int i) \{ return i * i; \} computation over the arguments

9. Loop invariant code move invariant code before the loop

$$
\text { while (b) \{... x = 5; ...\} }
$$

10.Induction variables in loops transform multiplication into

```
i = 1; while (b) { k = i*3; f(k); i = i+1;}
``` incrementation

\section*{Program Analysis for Optimization}

\section*{Static analysis:}
static properties of program structure and of every execution; safe, pessimistic assumptions
where input and dynamic execution paths are not known
Context of analysis - the larger the more information:

Expression local optimization
Basic block
procedure (control flow graph)
program module (call graph)
separate compilation
complete program
Analysis and Transformation:
Analysis provides preconditions for applicability of transformations
Transformation may change analysed properties, may inhibit or enable other transformations

Order of analyses and transformations is relevant

\section*{Program Analysis in General}

Program text is systematically analyzed to exhibit structures of the program, properties of program entities, relations between program entities.

\section*{Objectives:}

Compiler:
- Code improvement
- automatic parallelization
- automatic allocation of threads

Software engineering tools:
- program understanding
- software maintenance
- evaluation of software qualities
- reengineering, refactoring

Methods for program analysis stem from compiler construction

\section*{Overview on Program Analysis in Compilers}


\section*{Basic Blocks}

\section*{Basic Block (dt. Grundblock):}

Maximal sequence of instructions that can be entered only at the first of them and exited only from the last of them.

Begin of a basic block:
- procedure entry
- target of a branch
- instruction after a branch or return (must have a label)

\section*{Function calls}
are usually not considered as a branch, but as operations that have effects

\section*{Local optimization}
considers the context of one single basic block (or part of it) at a time.

\section*{Global optimization:}

Basic blocks are the nodes of control-flow graphs.

\section*{Example for Basic Blocks}

A C function that computes Fibonacci numbers:
Intermediate code with basic blocks:
[Muchnick, p. 170]
```

int fib (int m)
{ int f0 = 0, f1 = 1, f2, i;
if (m <= 1)
return m;
else
{ for(i=2; i<=m; i++)
{ f2 = f0 + f1;
f0 = f1;
f1 = £2;
}
return f2;
} }

```
if-condition belongs to the preceding basic block
while-condition does not belong to the preceding basic block


\section*{Control-Flow Graph (CFG)}

A control-flow graph, CFG (dt. Ablaufgraph)
represents the control structure of a function
Nodes: basic blocks and 2 unique nodes entry and exit.
Edge \(\mathbf{a}->\mathbf{b}\) : control may flow from the end of \(\mathbf{a}\) to the begin of \(\mathbf{b}\)

Fundamental data structure for
- control flow analysis
- structural transformations

- code motion
- data-flow analysis (DFA)

\section*{Example for a Control-flow Graph}

Intermediate code with basic blocks:
Control-flow graph:
[Muchnick, p. 172]


\section*{Control-Flow Analysis}

Compute properties on the control-flow based on the CFG:
- dominator relations:
properties of paths through the CFG
- loop recognition:
recognize loops - independent of the source language construct
- hierarchical reduction of the CFG:
a region with a unique entry node on the one level is a node of the next level graph

Apply transformations based on control-flow information:
- dead code elimination:
eliminate unreachable subgraphs of the CFG
- code motion:
move instructions to better suitable places
- loop optimization:
loop invariant code, strength reduction, induction variables

\section*{Dominator Relation on CFG}

Relation over nodes of a CFG, characterizes paths through CFG, used for loop recognition, code motion
\(\mathbf{a}\) dominates \(\mathbf{b}\) ( \(\mathbf{a}\) dom \(\mathbf{b}\) ):
\(a\) is on every path from the entry node to \(b\) (reflexive, transitive, antisymmetric)
\(a\) is immediate dominator of \(b\) ( \(a\) idom \(b\) ):
a dom b and \(\mathrm{a} \neq \mathrm{b}\), and there is no c such that \(\mathrm{c} \neq \mathrm{a}, \mathrm{c} \neq \mathrm{b}, \mathrm{a}\) dom \(\mathrm{c}, \mathrm{c}\) dom b .


\section*{Immediate Dominator Relation is a Tree}

Every node has a unique immediate dominator.
The dominators of a node are linearly ordered by the idom relation.

Proof by contradiction:
Assume:
\(\mathrm{a} \neq \mathrm{b}, \mathrm{a}\) dom \(\mathrm{n}, \mathrm{b}\) dom n and not ( a dom b ) and not ( b dom a )

Then there are pathes in the CFG
- p1: from entry to a not touching b, since not (b dom a)
- p2: from entry to b not touching a, since not (a dom b)
- q1: from a to \(n\) not touching \(b\), since a dom \(n\) and not (a dom b)

- q2: from \(b\) to \(n\) not touching \(a\), since \(b\) dom \(n\) and not (b dom a)

Hence, there is a path p1-q1 from entry via a to \(n\) not touching \(b\).
That is a contradiction to the assumption \(b\) dom \(n\). Hence, n has a unique immediate dominator, either a or b .

\section*{Dominator Computation}

Algorithm computes the sets of dominators Domin( \(n\) ) for all nodes \(n \in N\) of a CFG:
```

for each n\inN do Domin(n) = N;
Domin(entry) = {entry};
repeat
for each n\inN-{entry} do
T = N;
for each p\inpred(n) do
T = T \cap Domin(p);
Domin(n)={n}}\cupT
until Domin is unchanged

```

Symmetric relation for backward analysis:
a postdominates b (a pdom b):
\(a\) is on every path from \(b\) to the exit node (reflexive, transitive, antisymmetric)

\section*{Loop Recognition: Structured Loops}
while (c) stmt; do stmt; while (c); do s1; if ( )break; s2; while (true);


\section*{Loop Recognition: Natural Loops}

Back edge \(t->h\) in a CFG: head \(h\) dominates tail \(t(h\) dom \(t\) ).

\section*{Natural loop of a back edge t->h:}
set \(S\) of nodes such that \(S\) contains \(h, t\) and
all nodes from which \(t\) can be reached without passing through \(h\).
\(h\) is the loop header.
Iterative computation of the natural loop for \(\mathrm{t}-\mathrm{>}\) h:
add predecessors of nodes in S according to the formula:
\(S=\{h, t\} \cup\{p \mid \exists a(a \in S \backslash\{h\} \wedge p \in \operatorname{pred}(a))\}\)
This definition of back edges is stronger than that of DFS back edges:

a DFS classification of edges: tree, forward, back

\section*{Example for Loop Recognition}
back edge:
natural loop:
4 -> 3
\(S_{1}=\{3,4\}\)
\(6->2\)
\(S_{2}=\{2,3,4,5,6\}\)
7 -> 2
\(S_{3}=\{2,3,4,5,7\}\)
6 -> 6
\(S_{4}=\{6\}\)
loops are
- disjoint
\(S_{1} \cap S_{4}=\varnothing\)
- nested
- non-nested,
\(S_{1} \subset S_{2}\)
but have the same loop header, are comprised into one loop


\section*{Loop Optimization}
- Introduce a preheader for a loop, as a place for loop invariant computations: a new, empty basic block that lies on every path to the loop header, but is not iterated:

while-loop:


- move loop invariant computations to the preheader: check use-def-chains: if an expression E contains no variables that are defined in the loop, then replace \(E\) by a temporary variable \(t\), and compute \(t=E\); in the preheader.
- eliminate redundant bounds-checks: propagate value intervals using the same technique as for constant propagation (see DFA) Example in Pascal:
```

var a: array [1..10] of integer;
i: integer;
for i := 1 to 10 do a[i] := i;

```
- induction variables, strength reduction: see next slide

\section*{Loop Induction Variables}

Induction variables may occur in any loop - not only in for loops.
Induction variable i:
\(i\) is incremented (decremented) by a constant value c on every iteration.

\section*{Basic induction variable i:}

There is exactly one definition \(\mathbf{i}=\mathbf{i}+\mathbf{c}\); or \(\mathbf{i}=\mathbf{i}-\mathbf{c}\); that is executed on every path through the loop.

Dependent induction variable \(\mathbf{j}\) :
j depends on induction variable i by a linear function \(\mathbf{i}\) * \(\mathbf{a}+\mathrm{b}\) represented by (i, a, b).


\section*{Transformation of Induction Variables}

Transformation of dependent induction variables:
1. For each (i, a, b) create a temporary variable s. j: (i, 3, 2)
2. Initialize \(s=i * a+b\); in the preheader.
3. Replace i * \(a+b\) in the loop by \(s\).
4. Add \(s=s+c * a ;\) behind the increment of \(i\)

Strength reduction:


Replace a costly operation (multiplication) by a cheaper one (addition).

Linear increment of array address computation (next slide)

\section*{Examples for Transformations of Induction Variable}
do
\[
\mathbf{k}=i * 3+1
\]
\[
\text { f }(5 * k) \text {; }
\]
/* x = a[i]; compiled: */
x = cont (start+i*elsize);
\(i=i+2 ;\)
while ( \(\mathrm{E}_{\mathrm{k}}\) )
basic induction variable:
\[
\text { i: } \quad c=2
\]
dependent induction variables:
```

k: (i, 3, 1)
arg: (k, 5, 0)
ind: (i, elsize, start)

```
```

sk = i*3+1;
sarg = sk*5;
sind = start + i*elsize;

```
do
    \(\mathbf{k}=\mathbf{s k} ;\)
    f (sarg);
    \(\mathbf{x}=\) cont (sind);
    \(i=i+2 ;\)
    sk \(=s k+6 ;\)
    sarg \(=\) sarg +30 ;
    sind \(=\) sind \(+2 * e l s i z e ;\)
while ( \(\mathrm{E}_{\mathrm{k}}\) )

\section*{Data-Flow Analysis}

Data-flow analysis (DFA) provides information about how the execution of a program may manipulate its data.

Many different problems can be formulated as data-flow problems, for example:
- Which assignments to variable \(\mathbf{v}\) may influence \(a \operatorname{use}\) of v at a certain program position?
- Is a variable v used on any path from a program position p to the exit node?
- The values of which expressions are available at program position \(\mathbf{p}\) ?

Data-flow problems are stated in terms of
- paths through the control-flow graph and
- properties of basic blocks.

Data-flow analysis provides information for global optimization.

\section*{Data-flow analysis does not know}
- which input values are provided at run-time,
- which branches are taken at run-time.

Its results are to be interpreted pessimistic

\section*{Data-Flow Equations}

A data-flow problem is stated as a system of equations for a control-flow graph.
System of Equations for forward problems (propagate information along control-flow edges):

\section*{Example Reaching definitions:}

A definiton d of a variable v reaches the begin of a block \(\mathbf{B}\) if
there is a path from \(\mathbf{d}\) to \(\mathbf{B}\) on which v is not assigned again.

In, Out, Gen, Kill represent analysis information:
sets of statements, sets of variables, sets of expressions depending on the analysis problem

2 equations for each basic block:
Out \((B)=f_{B}(\ln (B))\)
\[
=\operatorname{Gen}(B) \cup(\ln (B)-\text { Kill }(B))
\]

In \(\quad(B)=\underset{h \in \underset{\operatorname{pred}(B)}{\Theta}}{ }\) Out (h)


In, Out variables of the system of equations for each block
Gen, Kill a pair of constant sets that characterize a block w.r.t. the DFA problem \(\Theta\) meet operator; e. g. \(\Theta=\cup\) for „reaching definitions", \(\Theta=\cap\) for „available expressions"

\section*{Specification of a DFA Problem}

Specification of reaching definitions:
1. Description:

A definiton \(\mathbf{d}\) of a variable \(\mathbf{v}\) reaches the begin of a block \(\mathbf{B}\) if there is a path from \(\mathbf{d}\) to \(\boldsymbol{B}\) on which \(v\) is not assigned again.
2. It is a forward problem.
3. The meet operator is union.
4. The analysis information in the sets are assignments at certain program positions.
5. Gen (B):
contains all definitions \(\mathbf{d}\) : \(\mathbf{v}=\mathbf{e}\); in \(\mathbf{B}\), such that \(\mathbf{v}\) is not defined after \(\mathbf{d}\) in \(\mathbf{B}\).
6. Kill (B):
if \(\mathbf{v}\) is assigned in B , then \(\operatorname{Kill}(\mathrm{B})\) contains all definitions \(\mathbf{d}\) : \(\mathbf{v}=\mathbf{e}\); of blocks different from B.

2 equations for each basic block:
Out \((B)=f_{B}(\ln (B))\)
\[
=\operatorname{Gen}(B) \cup(\ln (B)-\text { Kill }(B))
\]

In \(\quad(B)=\underset{h \in \operatorname{pred}(B)}{\Theta}\) Out (h)


\section*{Variants of DFA Problems}
- forward problem:

DFA information flows along the control flow
\(\ln (\mathrm{B})\) is determined by Out( h\()\) of the predecessor blocks
backward problem (see C-2.23):
DFA information flows against the control flow
Out(B) is determined by \(\ln (\mathrm{h})\) of the successor blocks
- union problem:
problem description: „there is a path";
meet operator is \(\Theta=\cup\)
solution: minimal sets that solve the equations
intersect problem:
problem description: „for all paths"
meet operator is \(\Theta=\cap\)
solution: maximal sets that solve the equations
- optimization information: sets of certain statements, of variables, of expressions.

Further classes of DFA problems over general lattices instead of sets are not considered here.

\section*{Example Reaching Definitions}

Gen (B):
contains all definitions \(\mathbf{d}\) : \(\mathbf{v}=\mathbf{e}\); in \(\mathbf{B}\), such that \(\mathbf{v}\) is not defined after \(\mathbf{d}\) in \(\mathbf{B}\).

Kill (B):
contains all definitions \(\mathbf{d}\) : \(\mathbf{v}=\mathbf{e}\); in blocks different from \(\mathbf{B}\), such that \(B\) has a definition of \(\mathbf{v}\).

\begin{tabular}{|lll|}
\hline & \begin{tabular}{l} 
Description of DFA-Problem \\
Gen \\
Kill
\end{tabular} \\
\(B_{1}\) & \(d_{1}, d_{2}, d_{3}\) & \(d_{4}, d_{5}, d_{6}, d_{7}, d_{8}\) \\
\(B_{2}\) & \(d_{4}\) & \(d_{2}, d_{6}\) \\
\(B_{3}\) & \(d_{5}\) & \(d_{3}, d_{7}\) \\
\(B_{4}\) & \(d_{6}, d_{7}\) & \(d_{2}, d_{3}, d_{4}, d_{5}\) \\
\(B_{5}\) & \(d_{8}\) & \(d_{1}\) \\
\hline
\end{tabular}
\begin{tabular}{|ll|}
\hline In \(\quad\) DFA-Solution & Out \\
\(\varnothing\) & \(d_{1}, d_{2}, d_{3}\) \\
\(d_{1}, d_{2}, d_{3}\) & \(d_{1}, d_{3}, d_{4}\) \\
\(d_{1}, d_{2}, d_{3}, d_{6}, d_{7}\) & \(d_{1}, d_{2}, d_{5}, d_{6}\) \\
\(d_{1}, d_{2}, d_{5}, d_{6}\) & \(d_{1}, d_{6}, d_{7}\) \\
\(d_{1}, d_{2}, d_{3}, d_{4}, d_{5}, d_{6}\) & \(d_{2}, d_{3}, d_{4}, d_{5}, d_{6}, d_{8}\) \\
\hline
\end{tabular}

\section*{Iterative Solution of Data-Flow Equations}

Input: the CFG; the sets Gen(B) and Kill(B) for each basic block B
Output: the sets \(\ln (B)\) and \(\operatorname{Out}(B)\)
```

Algorithm:
repeat
stable := true;
for all B \not= entry {*}
do begin
for all V \in pred(B) do
In(B):= In(B) \Theta Out(V);
oldout:= Out(B);
Out(B):= Gen(B) \cup (In(B)-Kill(B));
stable:= stable and Out(B)=oldout
end
until stable

```
```

Initialization
Union: empty sets
for all B do
begin
In (B):=\varnothing;
Out (B) :=Gen (B)
end;
Intersect: full sets
for all B do
begin
In(B) := U;
Out(B):=
Gen (B)\cup
(U - Kill(B))
end;

```

Complexity: \(\mathrm{O}\left(\mathrm{n}^{3}\right)\) with n number of basic blocks \(O\left(n^{2}\right)\) if \(\mid\) pred (B) \(\mid \leq k \ll \boldsymbol{n}\) for all \(B\)

\section*{Backward Problems}

System of Equations for backward problems propagate information against control-flow edges:

2 equations for each basic block:

\section*{Example Live variables:}
1. Description: Is variable \(\mathbf{v}\) alive at a given point \(p\) in the program, i. e. is there a path from p to the exit where v is used but not defined before the use?
2. backward problem
3. optimization information: sets of variables

4. meet operator: \(\Theta=\cup\) union
5. Gen (B): variables that are used in B, but not defined before they are used there.
6. Kill (B): variables that are defined in B, but not used before they are defined there.

\section*{Important Data-Flow Problems}
1. Reaching definitions: A definiton \(d\) of a variable \(v\) reaches the beginning of a block \(B\) if there is a path from \(\mathbf{d}\) to B on which v is not assigned again.
DFA variant: forward; union; set of assignments
Transformations: use-def-chains, constant propagation, loop invariant computations
2. Live variables: Is variable \(\mathbf{v}\) alive at a given point p in the program, i. e. there is a path from p to the exit where v is used but not defined before the use.
DFA variant: backward; union; set of variables
Transformations: eliminate redundant assignments
3. Available expressions: Is expression e computed on every path from the entry to a program position p and none of its variables is defined after the last computation before \(\mathbf{p}\). DFA variant: forward; intersect; set of expressions
Transformations: eliminate redundant computations
4. Copy propagation: Is a copy assignment \(\mathbf{c}: \mathbf{x}=\mathbf{y}\) redundant, i.e. on every path from \(\mathbf{c}\) to a use of \(\mathbf{x}\) there is no assignment to \(\mathbf{y}\) ?
DFA variant: forward; intersect; set of copy assignments
Transformations: remove copy assignments and rename use
5. Constant propagation: Has variable \(\mathbf{x}\) at position \(p\) a known value, i.e. on every path from the entry to \(\mathbf{p}\) the last definition of \(\mathbf{x}\) is an assignment of the same known value.
DFA variant: forward; combine function; vector of values
Transformations: substitution of variable uses by constants

\section*{Algebraic Foundation of DFA}

DFA performs computations on a lattice (dt. Verband) of values, e. g. bit-vectors representing finite sets. It guarantees termination of computation and well-defined solutions. see [Muchnick, pp 223-228]

A lattice \(L\) is a set of values with two operations: \(\cap\) meet and \(\cup\) join
Required properties:
1. closure: \(\quad x, y \in L\) implies \(x \cap y \in L, x \cup y \in L\)
2. commutativity: \(x \cap y=y \cap x\) and \(x \cup y=y \cup x\)
3. associativity: \((x \cap y) \cap z=x \cap(y \cap z)\) and \((x \cup y) \cup z=x \cup(y \cup z)\)
4. absorption: \(\quad x \cap(x \cup y)=x=x \cup(x \cap y)\)
5. unique elements bottom \(\perp\), top T :
\[
x \cap \perp=\perp \text { and } x \cup T=T
\]

In most DFA problems only a semilattice is used with \(L, \cap, \perp\) or \(L, \cup, T\)
Partial order defined by meet, defined by join: \(x \subseteq y: x \cap y=x \quad x \supseteq y: x \cup y=x\) (transitive, antisymmetric, reflexive)

\section*{Some DFA Lattices}
\begin{tabular}{|ll|}
\hline \multicolumn{1}{|c|}{ Bool } & \(T=\) true \\
\(\cap=\) and & 2 \\
\(\cup=\) or & \(\perp=\) false
\end{tabular}
\begin{tabular}{|cc|}
\hline \multicolumn{2}{|c|}{\begin{tabular}{l} 
Variable usage \\
\{defined, used \(\}\)
\end{tabular}} \\
\{defined \(\}\) & \(\{\) \{used \(\}\)
\end{tabular}

2

3

5
Range Lattice: \(\left[\mathrm{lo}\right.\), hi] \(\in(\mathrm{Z} \cup\{-\infty, \infty\})^{2}\)
\(\perp=\) [ ] empty range, \(T=[-\infty, \infty]\),
\(x \subseteq y: x\) is contained in \(y\)
\(\cap:[11, h 1] \cap[12, h 2]=x\)
let I = max (I1, l2),
\(h=\min (h 1, h 2)\),
\(x=\) if \(h<1\) then \(\perp\) else \([l, h]\)
\(\cup:[11, h 1] \cup[12, h 2]=\)
[min(11, I2), max(h1, h2)]


4 ICP Integer Constant Propagation Lattice

\[
\begin{array}{lll}
n \cap \perp=\perp & n \cap n=n & n \cap m=\perp \text { if } n \neq m \\
n \cup T=T & n \cup n=n & n \cup m=T
\end{array}
\]

6
Semilattice of types


\section*{Monotone Functions Over Lattices}

The effects of program constructs on DFA information are described by functions over a suitable lattice,
e. g. the function for basic block \(B_{3}\) on \(\mathrm{C}-2.22\) :
\[
f_{3}\left(<x_{1} x_{2} x_{3} x_{4} x_{5} x_{6} x_{7} x_{8}>\right)=\left\langle x_{1} x_{2} 0 x_{4} 1 x_{6} 0 x_{8}>\in B V^{8}\right.
\]

Gen-Kill pair encoded as function
\(f: L \rightarrow L\) is a monotone function over the lattice \(L\) if
\[
\forall x, y \in L: x \subseteq y \Rightarrow f(x) \subseteq f(y)
\]

Finite height of the lattice and monotonicity of the functions guarantee termination of the algorithms.

Fixed points \(z\) of the function \(f\), with \(f(z)=z\), is a solution of the set of DFA equations.
MOP: Meet over all paths solution is desired, i. e. the „best" with respect to \(L\)
MFP: Maximum fixed point is computed by algorithms, if functions are monotone
If the functions \(f\) are additionally distributive, then MFP \(=\) MOP.
\(f: L \rightarrow L\) is a distributive function over the lattice \(L\) if
\[
\forall x, y \in L: f(x \cap y)=f(x) \cap f(y)
\]

\section*{Variants of DFA Algorithms}

\section*{Heuristic improvement:}

Goal: propagate changes in the In and Out sets as fast as possible.
Technique: visit CFG nodes in topological order in the outer for-loop \{*\}.
Then the number of iterations of the outer repeat-loop is only determined by back edges in the CFG

Algorithm for backward problems:
Exchange In and Out sets symmetrically in the algorithm of C-2.22b.
The nodes should be visited in topological order as if the directions of edges were flipped.
Hierarchical algorithms, interval analysis:
Regions of the CFG are considered nodes of a CFG on a higher level.
That abstraction is recursively applied until a single root node is reached.
The Gen, Kill sets are combined in upward direction;
the \(\operatorname{In}\), Out sets are refined downward.

\section*{Program Analysis: Call Graph (context-insensitive)}

Nodes: defined functions
Arc \(\mathrm{g}->\mathrm{h}\) : function g contains a call \(\mathrm{h}(\) ),
i. e. a call g() may cause the execution of a call h()
```

void a () {...b()...c()...f()...}
void b () {...d()...c()...}
void c() {...e()...}
void d() {...}
void e() {...v++;...b()...}
void f() {...d()...}

```


Analysis of structure:
b, c, e are recursive;
a, d, f are non-recursive

Propagation of properties:
assume a call e() may modify a global variable \(v\)
then calls \(a(), b(), c()\) may indirectly cause modification of \(v\)
\(\mathrm{v}=\mathrm{f}() ;\) cnt \(=0\); while(...) \(\{. . . \mathrm{b}() ;\) cnt \(+=\mathrm{v} ;\}\)

\section*{Program Analysis: Call Graph (context-sensitive)}

Nodes: defined functions and calls (bipartite)
Arc g -> h : function g contains a call \(\mathrm{h}(\) (), i.e a call g() may cause the execution of a call h() or call \(g()\) leads to function \(g\)
```

void a () {...b()...c()...f()...}
void b () {...d()...c()...}
void c() {...e()...}
void d() {...}
void e() {...v++;...b()...}
void f() {...d()...}

```


Calls of the same function in different contexts are distinguished by different nodes, e.g. the call of \(c\) in \(a\) and in \(b\).

Analysis can be more precise in that aspect.

\section*{Calls Using Function Variables}

Contents of function variables is assigned at run-time.
Static analysis does not know (precisely) which function is called.
Call graph has to assume that any function may be called.
```

void a()
{...(*h)(0.3, 27)...}

```

Analysis for a better approximation of potential callees:
only those functions which
1. fit to the type of \(h\)
2. are assigned somewhere in the program
3. can be derived from the reaching definitions at the call

```

void m (int j) {...}
void g (float x, int i) {...}
...k = m;... f(g); ...
void a()
{ void (*h)(float,int) = g;
if(...) h = s;
...(*h)(0.3, 27)...
}

```

\section*{Analysis of Object-Oriented Programs}

Aspects specific for object-oriented analysis:
1. hierarchy of classes and interfaces specifies a complex system of subtypes
2. hierarchy of classes and interfaces specifies inheritance and overriding relation for methods
3. dynamic method binding
for method calls \(\mathrm{v} . \mathrm{m}(. .\).\() the callee is determined at run-time\) good object-oriented style relies on that feature
4. many small methods are typical object-oriented style
5. library use and reuse of modules complete program contains many unused classes and methods

Static predictions for dynamically bound method calls
are essential for most analyses

\section*{Class Hierarchy Graph}

\section*{Node: class or interface}

Arc \(\mathbf{a}->\mathbf{b}: \quad a\) is subclass of \(b\) or a implements interface \(b\)


\section*{Object-Oriented Call Graph}

\section*{Node: implemented method, \\ identified by class name, method name: X-a}

Arc X-a -> Y-b: method \(\mathbf{X}\)-a contains a call v.b(...) that may be bound to Y -b


Call graph for F-p containing v.m(...)


Call graph: any method may be bound to that call in F-p (compare to function variables) analysis yields better approximations

\section*{Call Graphs Constructed by Class Hierarchy Analysis (CHA)}

The call graph is reduced to a set of reachable methods using the class hierarchy and the static type of the receiver expression in the call:

If a method \(F\)-p is reachable and
if it contains a dynamically bound call v.m(...) and
\(T\) is the static type of \(v\),
then every method \(m\) that is inherited by \(\mathbf{T}\) or by a subtype of \(\mathbf{T}\) is also reachable, and arcs go from F-p to them.


Call graph for F-p containing v.m(...)
A-m A-p static type: F v;


\section*{Refined Approximations for Call Graph Construction}

Class Hierarchy Analysis (CHA): (see C-2.32)
Rapid Type Analysis (RTA):
As CHA, but only methods of those classes C are considered which are instantiated (new \(\mathrm{C}(\) ) ) in a reachable method.

Reaching Type Analysis:
Approximations of run-time types is propagated through a graph: nodes represent variables, arcs represent copy assignments.

Declared Type Analysis:
one node T represents all variables declared to have type T
Variable Type Analysis:
one node V represents a single variable
Points-to Analysis:
Information on object identities is propagated through the control-flow graph

\section*{Results of Analysis of Dynamically Bound Calls}


\section*{Modules of a Toolset for Program Analysis}
\begin{tabular}{|c|c|c|}
\hline analysis module & purpose & category \\
\hline ClassMemberVisibility & examines visibility levels of declarations & \multirow{5}{*}{visualization} \\
\hline MethodSizeStatistics & examines length of method implementations in bytecode operations and frequency of different bytecode operations & \\
\hline ExternalEntities & histogram of references to program entities that reside outside a group of classes & \\
\hline InheritanceBoundary & histogram of lowest superclass outside a group of classes & \\
\hline SimpleSetterGetter & recognizes simple access methods with bytecode patterns & \\
\hline MethodInspector & decomposes the raw bytecode array of a method implementation into a list of instruction objects & auxiliary analysis \\
\hline ControlFlow & builds a control flow graph for method implementations & \multirow{6}{*}{fundamental analyses} \\
\hline Dominator & constructs the dominator tree for a control flow graph & \\
\hline Loop & uses the dominator tree to augment the control flow graph with loop and loop nesting information & \\
\hline InstrDefUse & models operand accesses for each bytecode instruction & \\
\hline LocalDefUse & builds intraprocedural def/use chains & \\
\hline LifeSpan & analyzes lifeness of local variables and stack locations & \\
\hline DefUseTypeInfo & infers type information for operand accesses & \multirow{5}{*}{analysis of incomplete programs} \\
\hline Hierarchy & class hierarchy analysis based on a horizontal slice of the hierarchy & \\
\hline PreciseCallGraph & builds call graph based on inferred type information, copes with incomplete class hierarchy & \\
\hline ParamEscape & transitively traces propagation of actual parameters in a method call (escape = leaves analyzed library) & \\
\hline ReadWriteFields & transitive liveness and access analysis for instance fields accessed by a method call & \\
\hline
\end{tabular}

Table 0-1. Analysis plug-ins in our framework
[ Michael Thies: Combining Static Analysis of Java Libraries with Dynamic Optimization, Dissertation, Shaker Verlag, April 2001]

\section*{3. Code Generation}

Input: Program in intermediate language

\section*{Tasks:}
\[
\begin{array}{ll}
\text { Storage mapping } & \begin{array}{l}
\text { properties of program objects (size, address) } \\
\text { in the definition module }
\end{array} \\
\text { Code selection } & \text { generate instruction sequence, optimizing selection } \\
\text { Register allocation } & \text { use of registers for intermediate results and for variables }
\end{array}
\]

Output: abstract machine program, stored in a data structure

Design of code generation:
- analyze properties of the target processor
- plan storage mapping
- design at least one instruction sequence for each operation of the intermediate language

Implementation of code generation:
- Storage mapping:
a traversal through the program and the definition module computes sizes and addresses of storage objects
- Code selection: use a generator for pattern matching in trees
- Register allocation:
methods for expression trees, basic blocks, and for CFGs

\subsection*{3.1 Storage Mapping}

\section*{Objective:}
for each storable program object compute storage class, relative address, size Implementation:
use properties in the definition module, traverse defined program objects
Design the use of storage areas:
```

code storage progam code
global data to be linked for all compilation units
run-time stack activation records for function calls
heap storage for dynamically allocated objects, garbage collection
registers for addressing of storage areas (e.g. stack pointer)
function results, arguments
local variables, intermediate results (register allocation)

```

\section*{Design the mapping of data types (next slides)}

Design activation records and translation of function calls (next section)

\section*{Storage Mapping for Data Types}

\section*{Basic types}
arithmetic, boolean, character types
match language requirements and machine properties:
data format, available instructions,
size and alignment in memory

\section*{Structured types}
for each type
representation in memory and code sequences for operations, e. g. assignment, selection, ...
record
union
set
relative address and alignment of components; reorder components for optimization


storage overlay, tag field for discriminated union

for arrays and functions see next slides

\section*{Array Implementation: Pointer Trees}

An n-dimensional array
```

a: array[l1..u1, l2..u2, ..., ln..un] of real;

```
is implemented by a tree of linear arrays; \(n-1\) levels of pointer arrays and data arrays on the \(n\)-th level


Each single array can be allocated separately, dynamically; scattered in memory In Java arrays are implemented this way.

\section*{Array Implementation: Contiguous Storage}

An n-dimensional array
```

a: array[l1..u1, l2..u2, ..., ln..un] of real;

```
is mapped to one contiguous storage area linearized in row-major order:

linear storage map of array a onto byte-array store from index start:
number of elements
i-th index stride
element size in bytes
```

elno = st1 * st2 * ... * stn
sti = ui - li + 1
elsz

```

Index map of a[i1, i2, ..., in]:
store[start+ (.. (i1-l1)*st2 + (i2-12))*st3 +..)*stn + (in-ln))*elsz]
store[const + (..(i1*st2 + i2)*st3 +..)*stn + in)*elsz]

\section*{Functions as Data Objects}

Functions may occur as data objects:
- variables
- parameters
- function results
- lambda expressions (in functional languages)

Functions that are defined on the outermost program level (non-nested)
can be implemented by just the address of the code.

Functions that are defined in nested structures have to be implemented by a pair: (closure, code)

The closure contains all bindings of names to variables or values that are valid when the function definition is executed.

In run-time stack implementations the closure is a sequence of activation records on the static predecessor chain.

\subsection*{3.2 Run-Time Stack Activation Records}

Run-time stack contains one activation record for each active function call.

\section*{Activation record:}
provides storage for the data of a function call.
dynamic link:
link from callee to caller,
to the preceding record on the stack
static link:
link from callee \(\mathbf{c}\) to the record \(\mathbf{s}\) where \(\mathbf{c}\) is defined
\(s\) is a call of a function which contains the definition of the function, the call of which created c .
activation record:
parameters
static link
return address
dynamic link
local variables
register save area

Variables of surrounding functions are accessed via the static predecessor chain.

Only relevant for languages which allow nested functions, classes, objects.

\section*{closure of a function call:}
the activation records on the static predecessor chain

\section*{Example for a Run-Time Stack}

\section*{Run-time stack:}

A call creates an activation record and pushes it onto the stack. It is popped on termination of the call.


The static link points to the activation record where the called function is defined, e. g. \(r_{3}\) in \(q_{3}\)

Optimization: activation records of non-recursive functions may be allocated statically. Languages without recursive functions (FORTRAN) do not need a run-time stack.

Parallel processes, threads, and coroutines need a separate run-time stack each.

\section*{Not-Most-Recent Property}

The static link of an activation record \(c\) for a function \(r\) points to an activation record \(d\) for a function \(q\) where \(r\) is defined in.
If there are activation records for \(q\) on the stack, that are more recently created than \(d\), the static link to d is not-most-recent.

That effect can be achieved by using functional parameters or variables.
Example:


\section*{Closures on Run-Time Stacks}

Function calls can be implemented by a run-time stack if the closure of a function is still on the run-time stack when the function is called.


Language conditions to guarantee run-time stack discipline:
Pascal: functions not allowed as function results, or variables
C: \(\quad\) no nested functions
Modula-2: nested functions not allowed as values of variables
Functional languages maintain activation records on the heap instead of the run-time stack

\section*{Activation Records and Call Code}

\section*{activation record:}

\section*{result}
parameters
static link
return address
dynamic link
local variables
register save area


\section*{call code}
push parameter values
push static link
subroutine jump
- push dynamic link stack register := top of stack increment top of stack for local variables save registers
function body
restore registers deallocate local variables pop stack register return jump
pop static link
pop parameter area
use and pop result

\subsection*{3.3 Code Sequences for Control Statements}

A code sequence defines how a control statement is transformed into jumps and labels.
Notation of the Code constructs:
\begin{tabular}{ll} 
Code (S) & generate code for statements \(\mathbf{S}\) \\
Code ( \(\mathbf{C}\), true, M) & \begin{tabular}{l} 
generate code for condition C such that \\
it branches to M if C is true,
\end{tabular} \\
otherwise control continues without branching \\
Code ( \(\mathbf{A}, \mathrm{Ri})\) & \begin{tabular}{l} 
generate code for expression \(\mathbf{A}\) such that the \\
result is in register Ri
\end{tabular}
\end{tabular}

Code sequence for if-else statement:
```

if (cond) ST; else SE;:
Code (cond, false, M1)
Code (ST)
goto M2
M1: Code (SE)
M2 :

```

\section*{Short Circuit Translation of Boolean Expressions}

Boolean expressions are translated into sequences of conditional branches.
Operands are evaluated from left to right until the result is determined.


2 code sequences for each operator; applied to condition tree on a top-down traversal:

Code (A and B, true, M): Code (A, false, N)
Code (B, true, M)
N :
Code (A and B, false, M): Code (A, false, M) Code (B, false, M)

Code (A or B, true, M): Code (A, true, M) Code (B, true M)

Code (A or B, false, M): Code (A, true, N)
Code (B, false, M)
N :

Code (not A, X, M): \(\quad \operatorname{Code}(A, n o t ~ X, ~ M) ~\)
Code (A < B, true, M): Code (A, Ri);
Code (B, Rj) cmp Ri, Rj braLt M

Code (A < B, false, M): Code (A, Ri); Code (B, Rj) cmp Ri, Rj braGe M

Code for a leaf:

\section*{Example for Short Circuit Translation}


\section*{Code Sequences for Loops}

While-loop variant 1:
```

while (Condition) Body
M1: Code (Condition, false, M2)
Code (Body)
goto M1
M2 :

```

While-loop variant 2:
```

while (Condition) Body

```
    goto M2
    M1: Code (Body)
    M2: Code (Condition, true, M1)

Pascal for-loop unsafe variant:
```

for i:= Init to Final do Body

```
    i = Init
L: if (i>Final) goto M
    Code (Body)
    i++
    goto L
M:

Pascal for-loop safe variant:
for i:= Init to Final do Body
    if (Init==minint) goto L
    i = Init - 1
    goto N
    L: Code (Body)
    N: if (i>= Final) goto M
    i++
    goto L
    M:

\subsection*{3.4 Code Selection}
- Given: target tree in intermediate language.
- Optimizing selection: Select patterns that translate single nodes or small subtrees into machine instructions; cover the whole tree with as few instructions as possible.
- Method: Tree pattern matching, several techniques


\section*{Selection Technique: Value Descriptors}

Intermediate language tree node operators; egg.:
add address of variable
cont constant value
cont load contents of address
addradd address + value

Value descriptors state how/where the value of a tree node is represented, e. g.
\(\mathbf{R}_{\mathbf{i}}\) c constant value \(C\) \(\mathbf{R}_{\mathrm{i}}, \mathbf{C} \quad\) address \(\mathrm{R}_{\mathrm{i}}+\mathrm{c}\) (adr) contents at the address adr
alternative translation patterns to be selected context dependend:

addradd \(\quad \mathrm{R}_{\mathrm{i}}, \mathrm{c} 1 \quad \mathrm{c} 2 \quad->\mathrm{R}_{\mathrm{i}}, \mathrm{c} 1+\mathrm{c} 2 \quad . /\).

addradd \(\quad R_{i} \quad R_{j} \quad \rightarrow R_{k} \quad\) add \(R_{i}, R_{j}, R_{k}\)

\section*{Example for a Set of Translation Patterns}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \# & operator & \multicolumn{2}{|l|}{operands} & result & code \\
\hline 1 & addr & \(\mathrm{R}_{\mathrm{i}}\), C & & \(\rightarrow \mathrm{R}_{\mathrm{i}}, \mathrm{c}\) & ./. \\
\hline \[
\begin{aligned}
& 2 \\
& 3
\end{aligned}
\] & const const & c & & \[
\begin{aligned}
& ->c \\
& \\
& ->R_{i}
\end{aligned}
\] & ./. move c, \(\mathrm{R}_{\mathrm{i}}\) \\
\hline 4 & cont & \(\mathrm{R}_{\mathrm{i}}\), C & & -> ( \(\mathrm{R}_{\mathrm{i}}, \mathrm{c}\) ) & ./. \\
\hline 5 & cont & \(\mathrm{R}_{\mathrm{i}}\) & & \(\rightarrow\left(R_{i}\right)\) & ./. \\
\hline 6 & cont & \(\mathrm{R}_{\mathrm{i}}\), C & & \(\rightarrow R_{j}\) & load ( \(\mathrm{R}_{\mathrm{i}}, \mathrm{c}\) ), \(\mathrm{R}_{\mathrm{j}}\) \\
\hline 7 & cont & \(\mathrm{R}_{\mathrm{i}}\) & & \(\rightarrow R_{j}\) & load ( \(\mathrm{R}_{\mathrm{i}}\) ), \(\mathrm{R}_{\mathrm{j}}\) \\
\hline 8 & addradd & \(\mathrm{R}_{\mathrm{i}}\) & c & \(\rightarrow \mathrm{R}_{\mathrm{i}}, \mathrm{c}\) & ./. \\
\hline 9 & addradd & \(\mathrm{R}_{\mathrm{i}}, \mathrm{c} 1\) & c2 & \(\rightarrow \mathrm{R}_{\mathrm{i}}, \mathrm{c} 1+\mathrm{c} 2\) & ./. \\
\hline 10 & addradd & \(\mathrm{R}_{\mathrm{i}}\) & \(\mathrm{R}_{\mathrm{j}}\) & \(\rightarrow R_{k}\) & add \(\mathrm{Ri}, \mathrm{R}_{\mathrm{j}}, \mathrm{R}_{\mathrm{k}}\) \\
\hline 11 & addradd & \(\mathrm{R}_{\mathrm{i}}, \mathrm{c}\) & \(\mathrm{R}_{\mathrm{j}}\) & \(\rightarrow R_{k}, \mathrm{c}\) & add \(\mathrm{R}_{\mathrm{i}}, \mathrm{R}_{\mathrm{j}}, \mathrm{R}_{\mathrm{k}}\) \\
\hline 12 & assign & \(\mathrm{R}_{\mathrm{i}}\) & \(\mathrm{R}_{\mathrm{j}}\) & \(\rightarrow\) void & store \(\mathrm{R}_{\mathrm{j}}, \mathrm{R}_{\mathrm{i}}\) \\
\hline 13 & assign & \(\mathrm{R}_{\mathrm{i}}\) & ( \(\mathrm{R}_{\mathrm{j}}, \mathrm{c}\) ) & -> void & store ( \(\mathrm{R}_{\mathrm{j}}, \mathrm{c}\) ), \(\mathrm{R}_{\mathrm{i}}\) \\
\hline 14 & assign & \(\mathrm{R}_{\mathrm{i}, \mathrm{C}}\) & \(\mathrm{R}_{\mathrm{j}}\) & -> void & store \(\mathrm{R}_{\mathrm{j}}, \mathrm{R}_{\mathrm{i}}, \mathrm{C}\) \\
\hline
\end{tabular}

\section*{Tree Covered with Translation Patterns}


\section*{Pattern Selection}

\section*{Pass 1 bottom-up:}

Annotate the nodes with sets of pairs \(\{(\mathrm{v}, \mathrm{c}) \mid \mathrm{v}\) is a kind of value descriptor that an applicable pattern yields, c are the accumulated subtree costs\}

If ( \(\mathrm{v}, \mathrm{c} 1\) ), ( \(\mathrm{v}, \mathrm{c} 2\) ) keep only the cheaper pair.

\section*{Pass 2 top-down:}

Select for each node the cheapest pattern, that fits to the selection made above.

Pass 3 bottom-up:
Emit code.


Improved technique:
relative costs per sets =>
finite number of potential sets
integer encoding of the sets at generation time
load ( \(R 6,8\) ), R1 add R6,R1,R2 store (R2, 18),...
cost: 3 instructions

\section*{Pattern Matching in Trees: Bottom-up Rewrite}

Bottom-up Rewrite Systems (BURS) :
a general approach of the pattern matching method:
Specification in form of tree patterns, similar to C-3.18-C-3.20
Set of patterns is analyzed at generation time.
Generator produces a tree automaton with a finite set of states.
On the bottom-up traversal it annotates each tree node with a set of states:
those selection decisions which may lead to an optimal solution.
Decisions are made on the base of the costs of subtrees rather than costs of nodes.

Generator: BURG

\section*{Tree Pattern Matching by Parsing}

The tree is represented in prefix form.
Translation patterns are specified by tuples (CFG production, code, cost), Value descriptors are the nonterminals of the grammar, e. g.

8 RegConst ::= addradd Reg Const nop 0
11 RegConst ::= addradd RegConst Reg add \(\mathrm{R}_{\mathrm{i}}, \mathrm{R}_{\mathrm{j}}, \mathrm{R}_{\mathrm{k}} \quad 1\)
Deeper patterns allow for more effective optimization:
Void ::= assign RegConst addradd Reg Const store (Ri, c1),(Rj, c2) 1
Parsing for an ambiguous CFG:
application of a production is decided on the base of the production costs rather than the accumulated subtree costs!

Technique „Graham, Glanville"
Generators: GG, GGSS

\section*{4 Register Allocation}

\section*{Use of registers:}
1. intermediate results of expression evaluation
2. reused results of expression evaluation (CSE)
3. contents of frequently used variables
4. parameters of functions, function result
(cf. register windowing)
5. stack pointer, frame pointer, heap pointer, ...

Specific allocation methods for different context ranges:
- 4.1 expression trees (Sethi, Ullman)
- 4.2 basic blocks (Belady)
- 4.3 control flow graphs (graph coloring)

Symbolic registers: allocate a new symbolic register
to each value assignment (single assignment, no re-writing); defer allocation of real registers to a later phase.

\section*{Register Windowing}

Register windowing:
- Fast storage of the processor is accessed through a window.
- The n elements of the window are used as registers in instructions.
- On a call the window is shifted by \(m<n\) registers.
- Overlapping registers can be used under different names from both the caller and the callee.
- Parameters are passed without copying.
- Storage is organized in a ring; \(4-8\) windows; saved and restored as needed

Typical for Risc processors, e.g. Berkley RISC, SPARC


\section*{Activation Records in Register Windows}
- Parameters are passed in overlap area without copying.
- Registers need not be saved explicitly.
- If window is too small for an activation record, the remainder is allocated on the run-time stack; pointer to it in window.
\begin{tabular}{|l|l|}
\hline \begin{tabular}{l} 
parameters \\
static link \\
return address
\end{tabular} \\
\hline \begin{tabular}{l} 
dynamic link \\
local variables \\
register area
\end{tabular} & \begin{tabular}{l} 
parameters \\
static link \\
return address
\end{tabular} \\
\hline call area & \begin{tabular}{l} 
dynamic link \\
local variables \\
register area
\end{tabular} \\
\hline shift on call & \begin{tabular}{l} 
call area \\
\hline
\end{tabular} \\
\hline
\end{tabular}

\subsection*{4.1 Register Allocation for Expression Trees}

\section*{Problem:}

Generate code for expression evaluation.
Intermediate results are stored in registers.
Not enough registers:
spill code saves and restores.
Goal:
Minimize amount of spillcode.
see C-4.5a for optimality condition

\section*{Basic idea (Sethi, Ullman):}

For each subtree minimize the number of needed registes:
evaluate first the subtree that needs most registers
assume the results of \(T_{1}\) and \(T_{r}\) are in registers
eval. order
needed registers \(\mathrm{b}=\)
max \(\left(\mathrm{b}_{1}, \mathrm{~b}_{\mathrm{r}}+1\right)\)
max \(\left(\mathrm{b}_{r}, \mathrm{~b}_{1}+1\right)\)
number of available registers (regmax)
is upper limit for needed registers

\section*{Expression Tree Attribution}


\section*{Implementation by attribution of trees:}

Phase 1 bottom-up:
needed registers, evaluation order
Phase 2 top-down:
allocate registers
Phase 3 bottom-up:
compose code in evaluation order
load \(h, R_{r}\) is not needed if \(h\) can be a memory operand in op \(h, R_{l}\)


\section*{Contiguous code vs. optimal code}

The method assumes that the code for every subtree is contiguous.
(I.e. there is no interleaving between the code of any two disjoint subtrees.)

The method is optimal for a certain configuration of registers and operations, iff every optimal evaluation code can be arranged to be contiguous.

Counter example:
Registers: \(\quad 3\) int and 3 float Register need: (i, f) from \((0,0)\) to \((3,3)\)

Operations: int-and float-arithmetic, tofloat (widening)

\(\left.\begin{array}{lrllllllll}\text { register use: } & (3,3) & (1,0) & (0,1) & (0,0) & (0,3) & (0,1) & (0,2) & (0,1) \\ \text { contiguous: } & \mathbf{T}_{\mathbf{a}} & \text { add_i } & \text { toFloat } & \text { store_f } & T_{\mathbf{b}} & \text { sub_f } & \text { load_f } & \text { add_f }\end{array}\right)\)

\subsection*{4.2 Register Allocation for Basic Blocks by Life-Time Analysis}

Lifetimes of values in a basic block are used to minimize the number of registers needed.
1st Pass: Determine the life-times of values: from the definition to the last use (there may be several uses!).

Life-times are represented by intervals in a graph
cut of the graph = number of registers needed at that point
at the end of 1st pass:
maximal cut = number of register needed for the basic block
allocate registers in the graph:
In case of shortage of registers: select values to be spilled; criteria:
- a value that is already in memory - store instruction is saved
- the value that is latest used again

2nd Pass: allocate registers in the instructions; evaluation order remains unchanged

The technique has been presented originally 1966 by
Belady as a paging technique for storage allocation.

\section*{Example for Belady's Technique}


\subsection*{4.3 Register Allocation by Graph Coloring}

Definitions and uses of variables in control-flow graphs for function bodies are analyzed (DFA). Conflicting life-times are modelled. Presented by Chaitin.

Construct an interference graph:
Nodes: \(\quad\) Variables that are candidates for being kept in registers
Edge \(\{\mathbf{a}, \mathrm{b}\}\) : \(\quad\) Life-times of variables a and b overlap
=> \(a, b\) have to be kept in different registers
Life-times for CFGs are determined by data-flow analysis.
Graph is „colored" with register numbers.
NP complete problem; heuristic technique for coloring with k colors (registers):
eliminate nodes of degree \(<k\) (and its edges)
if the graph is finally empty:
graph can be colored with k colors
assign colors to nodes in reverse order of elimination
else
graph can not be colored this way
select a node for spilling
repeat the algorithm without that node

\section*{Example for Graph Coloring}

\section*{CFG with definitions and uses of variables}

variables in memory: \(x, y, z\)
variables considered for register alloc.:
\(a, b, c, d, e, f\)
results of live variable analysis:
b, d, e


\section*{5 Code Parallelization}

Processor with instruction level parallelism (ILP) executes several instructions in parallel.

Classes of processors and parallelism: VLIW, super scalar Pipelined processors Data parallel processors

Compiler analyzes sequential programs to
 exhibit potential parallelism
on instruction level;
model dependences between computations

Pipeline processor

sequential code scheduled for pipelining
Compiler arranges instructions for shortest execution time: instruction scheduling

Compiler analyzes loops to execute them in parallel loop transformation array transformation

Data parallel processor, SIMD


\subsection*{5.1 Instruction Scheduling Data Dependence Graph}

Exhibit potential fine-grained parallelism among operations.
Sequential code is over-specified!
Data dependence graph (DDG) for a basic block:
Node: operation;
Edge a -> b: operation buses the result of operation a
\[
\begin{array}{lll}
\text { Example for a basic block: } \\
1: & \mathrm{t} 1 & :=\mathrm{a} \\
2: & \mathrm{t} 2 & :=\mathrm{b} \\
3: & \mathrm{t} 3 & :=\mathrm{t} 1+\mathrm{t} 2 \\
4: & \mathrm{x} & :=\mathrm{t} 3 \\
5: & \mathrm{t} 4 & :=\mathrm{c} \\
6: & \mathrm{t} 5 & :=\mathrm{t} 3+\mathrm{t} 4 \\
7: & \mathrm{y} & :=\mathrm{t} 5 \\
8: & \mathrm{t} 6 & :=\mathrm{d} \\
9: & \mathrm{t} 7 & :=\mathrm{e} \\
10: & \mathrm{t} 8 & :=\mathrm{t} 6+\mathrm{t} 7 \\
11: & z & :=\mathrm{t} 8
\end{array}
\]

ti are symbolic registers, store intermediate results, obey single assignment rule

\section*{List Scheduling}

Input: data dependence graph
Output: a schedule of at most \(k\) operations per cycle, such that all dependences point forward; DDG arranged in levels

Algorithm: A ready list contains all operations that are not yet scheduled, but whose predecessors are scheduled
Iterate: select from the ready list up to k operations for the next cycle (heuristic), update the ready list
- Algorithm is optimal only for trees.
- Heuristic: Keep ready list sorted by distance to an end node, e. g.
(125)(893)(6104)(711)
without this heuristic:
(189)(2510)(311)(64)(7)
() operations in one cycle

Critical paths determine minimal schedule length: e. g. 1 -> 3 -> 6 -> 7

\section*{Variants and Restrictions for List Scheduling}
- Allocate as soon as possible, ASAP (C-5.3); as late as possible, ALAP
- Operations have unit execution time (C-5.3); different execution times: selection avoids conflicts with already allocated operations
- Operations only on specific functional units (e. g. 2 int FUs, 2 float FUs)
- Resource restrictions between operations, e. g. <= 1 load or store per cycle

Scheduled DDG models number of needed registers:
- arc represents the use of an intermediate result
- cut width through a level gives the number of registers needed

The tighter the schedule the more registers are needed (register pressure).

\section*{Instruction Scheduling for Pipelining}

Instruction pipeline with 3 stages:
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline 3 & 2 & 1 & \multicolumn{4}{|r|}{instruction sequence} \\
\hline 14 & 15 & nop & 16 & nop & 17 & ... \\
\hline
\end{tabular}

Dependent instructions may not
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{without scheduling:} \\
\hline 1 : & t1 & := a \\
\hline 2 : & t2 & := b \\
\hline & nop & \\
\hline 3: & t3 nop & : \(=\mathrm{t} 1+\mathrm{t} 2\) \\
\hline 4 : & x & := t3 \\
\hline 5: & t4 & := C \\
\hline & nop & \\
\hline 6: & t5 & : \(=\mathrm{t} 3+\mathrm{t} 4\) \\
\hline & nop & \\
\hline 7: & y & := t5 \\
\hline \(8:\) & t6 & := d \\
\hline 9: & t7 & := e \\
\hline & nop & \\
\hline 10: & t8 & := t6 + t7 \\
\hline & nop & \\
\hline & z & := 18 \\
\hline
\end{tabular}

Schedule rearranges the operation sequence, to minimize the number of delays:
\begin{tabular}{|c|c|c|c|}
\hline 1: & t1 & := a & \\
\hline 2 : & t2 & := b & \\
\hline 5: & t4 & := c & \\
\hline 3: & t3 & := t1 + t2 & with \\
\hline 8: & t6 & := d & scheduling \\
\hline 9 9: & t7 & := e & \\
\hline 6 : & t5 & := t3 + t4 & no delays \\
\hline 10: & t8 & \(:=\) t6 + t7 & \\
\hline 4: & x & := t3 & \\
\hline 7: & y & := t5 & \\
\hline 11: & z & := 18 & \\
\hline
\end{tabular}

\section*{Instruction Scheduling Algorithm for Pipelining}

Algorithm: modified list scheduling:
Select from the ready list such that the selected operation
- has a sufficient distance to all predecessors in DDG
- has many successors (heuristic)
- has a long path to the end node (heuristic) Insert an empty operation if none is selectable.

Ready list with additional information:
\begin{tabular}{llllllllllll}
\hline opr. & 1 & 2 & 5 & 8 & 9 & 3 & 6 & 4 & 10 & 7 & 11 \\
succ \# & 1 & 1 & 1 & 1 & 1 & 2 & 1 & 0 & 1 & 0 & 0 \\
to end & 3 & 3 & 2 & 2 & 2 & 2 & 1 & 1 & 1 & 0 & 0 \\
\begin{tabular}{l} 
sched. \\
cycle
\end{tabular} & 1 & 2 & 3 & 5 & 6 & 4 & 7 & 9 & 8 & 10 & 11
\end{tabular}
data dependence graph
\begin{tabular}{|lllll|}
\hline cycle & & & & \\
1 & \(1:\) & t 1 & \(:=\mathrm{a}\) & \\
2 & \(2:\) & t 2 & \(:=\mathrm{b}\) & \\
3 & \(5:\) & t 4 & \(:=\mathrm{c}\) & \\
4 & \(3:\) & t 3 & \(:=\mathrm{t} 1+\mathrm{t} 2\) & with \\
5 & \(8:\) & t 6 & \(:=\mathrm{d}\) & scheduling \\
6 & \(9:\) & t 7 & \(:=\mathrm{e}\) & \\
7 & \(6:\) & t 5 & \(:=\mathrm{t} 3+\mathrm{t} 4\) & \\
8 & \(10:\) & t 8 & \(:=\mathrm{t} 6+\mathrm{t} 7\) & \\
9 & \(4:\) & \(x\) & \(:=\mathrm{t} 3\) & \\
10 & \(7:\) & y & \(:=\mathrm{t5}\) & \\
11 & \(11:\) & \(z\) & \(:=\mathrm{t} 8\) & \\
\hline
\end{tabular}

\section*{Reused registers: anti- and output-dependences}


DDG with symbolic registers ti flow-dependences only


DDG with reused registers ti flow, anti-, and output-dependences


\section*{DDG with Loop Carried Dependences}

Factorial computation:
program:
\(i=0 ; f=1\);
while ( \(i!=n\) )
\(\{\quad i=i+1\);
\(\mathrm{f}=\mathrm{f}\) * i ;
\(\mathrm{m}[\mathrm{i}]=\mathrm{f} ;\)
\}
\(\mathrm{U} \longrightarrow \mathrm{V}\)
flow-dependence:
u writes before v uses
\(\mathrm{u}---\rightarrow \mathrm{v}\) flow-dependence into subsequent iteration
\(u-a_{-} \rightarrow v\) anti-dependence:
u uses a value before v overwrites it
\(u--\stackrel{O}{-} \rightarrow v\)
seq. machine code:

L: beq r1, r2 : exit add \(r 1,1: r 1\)
mul r5, r1: r5
add r8, 4 : r8
sto r5:m[r8]
bra L

Data dependence graph:

\(\mathrm{u} \xrightarrow{\mathrm{c}} \mathrm{v}\) control-dependence:
u has to be executed before v (u or v may branch)

\section*{Loop unrolling}

Loop unrolling: A technique for parallelization of loops.

> A single loop body does not exhibit enough parallelism => sparse schedule. Schedule the code (copies) of several adjacent iterations together
=> more compact schedule
sequential loop

parallel schedule for single body

unrolled loop
(3 times)

parallel schedule for unrolled loop


Prologue and epilogue needed to take care of iteration numbers that are not multiples of the unroll factor

\section*{Software Pipelining}

Software Pipelining: A technique for parallelization of loops.
A single loop body does not exhibit enough parallelism => sparse schedule. Overlap the execution of several adjacent iterations => compact schedule

The pipelined loop body
has each operation of the original sequential body, they belong to several iterations, they are tightly scheduled, its length is the initiation interval II, is shorter than the original body.

Prologue, epilogue: initiation and finalization code


\section*{Transform Loops by Software Pipelining}

\section*{Technique:}
1. Data dependence graph for the loop body, include loop carried dependences.
2. Chose a small initiation interval II not smaller than \#instructions / \#FUs
3. Make a „Modulo Schedule" s for the loop body:


Two instructions can not be scheduled on the same FU, \(\mathrm{i}_{1}\) in cycle \(\mathrm{c}_{1}\) and \(\mathrm{i}_{2}\) in cycle \(\mathrm{c}_{2}\), if \(\mathrm{c}_{1} \bmod \mathrm{II}=\mathrm{c}_{2} \bmod \mathrm{II}\)
4. If (3) does not succeed without conflict, increase II and repeat from 3
5. Allocate the instructions of \(s\) in the new loop of length II: \(i_{j}\) scheduled in cycle \(c_{j}\) is allocated to \(c_{j}\) mod II
6. Construct prologue and epilogue.
cycle
Modulo schedule for a loop body
\begin{tabular}{|c|c|c|c|}
\hline 0 & 11 & & \\
\hline 11 & & & \\
\hline 20 & & 12 & \\
\hline 31 & 13 & & 14 \\
\hline 40 & & & \\
\hline 51 & & 15 & \\
\hline
\end{tabular}


\section*{Result of Software Pipelining}
\begin{tabular}{|llllll|}
\hline \(\mathbf{t}\) & \(\mathbf{t}_{\mathbf{m}}\) & ADD & MUL & MEM & CTR \\
\hline 0 & 0 & L: & & & \\
1 & 1 & & add r1, 1: r1 & & beq r1, r2:exit \\
2 & 0 & & add r8, \(4: \mathrm{r} 8\) & mul r5, r1 : r5 & \\
3 & 1 & & & \(\ldots\) mul & \\
4 & 0 & & & sto \(\mathrm{r} 5: \mathrm{m} \mathrm{r8}\) & \\
5 & 1 & & & & \\
6 & 0 & & & sto & \\
7 & 1 & & & & bra L \\
\hline
\end{tabular}


\section*{5.2 / 6. Data Parallelism: Loop Parallelization}

Regular loops on orthogonal data structures - parallelized for data parallel processors

Development steps (automated by compilers):
- nested loops operating on arrays, sequential execution of iteration space
- analyze data dependences data-flow: definition and use of array elements
- transform loops
keep data dependences forward in time
- parallelize inner loop(s)
map to field or vector of processors
- map arrays to processors
such that many accesses are local, transform index spaces
```

DECLARE B[0..N,O..N+1]
FOR I := 1 ..N
FOR J := 1 .. I
B[I,J] :=
B[I-1,J]+B[I-1,J-1]
END FOR
END FOR

```


\section*{Iteration space of loop nests}

Iteration space of a loop nest of depth n :
- \(\mathbf{n}\)-dimensional space of integral points (polytope)
- each point \(\left(i_{1}, \ldots, i_{n}\right)\) represents an execution of the innermost loop body
- loop bounds are in general not known before run-time
- iteration need not have orthogonal borders
- iteration is elaborated sequentially
```

example:
computation of Pascal's triangle
DECLARE B[-1..N,-1..N]
FOR I := 0 .. N
FOR J := 0 .. I
B[I,J] :=
B[I-1,J]+B[I-1,J-1]
END FOR
END FOR

```


\section*{Examples for Iteration spaces of loop nests}


FOR I := 0 .. N FOR J := 0 .. I


FOR I := O..N BY 2
FOR J := 0 .. I


FOR I := 0 .. N FOR J := I..I +M
\(\mathrm{M}=3, \mathrm{~N}=4\)


FOR I := 0 .. N
FOR J := O..I BY 2 - J : O..I BY


FOR I := 0 .. M+N FOR \(J:=\max (0, I-M)\) \(\min (I, N)\)

\section*{Data Dependences in Iteration Spaces}

Data dependence from iteration point i1 to i2:
- Iteration i1 computes a value that is used in iteration i2 (flow dependence)
- relative dependence vector
\(\mathbf{d}=\mathbf{i 2} \mathbf{- i} \mathbf{1}=\left(\mathrm{i} 2_{1}-\mathrm{i} 1_{1}, \ldots, \mathrm{i} 2_{\mathrm{n}}-\mathrm{i} 1_{\mathrm{n}}\right)\)
holds for all iteration points except at the border
- Flow-dependences can not be directed against the execution order, can not point backward in time: each dependence vector must be lexicographically positive, i. e. \(\mathbf{d}=\left(0, \ldots, 0, d_{i}, \ldots\right), d_{i}>0\)

Example:
Computation of Pascal's triangle
```

DECLARE b[-1..N,-1..N]
FOR I := 0 .. N
FOR J := 0 .. I
B[I,J] :=
B[I-1,J]+B[I-1,J-1]
END FOR
END FOR

```



\section*{Loop Transformation}

The iteration space of a loop nest is transformed to new coordinates. Goals:
- execute innermost loop(s) in parallel
- improve locality of data accesses; in space: use storage of executing processor, in time: reuse values stored in cache
- systolic computation and communication scheme

Data dependences must point forward in time, i.e. lexicographically positive and not within parallel dimensions
linear basic transformations:
- Skewing: add iteration count of an outer loop to that of an inner one
- Reversal: flip execution order for one dimension
- Permutation: exchange two loops of the loop nest

SRP transformations (next slides)
non-linear transformations, e. g.
- Scaling: stretch the iteration space in one dimension, causes gaps
- Tiling: introduce additional inner loops that cover tiles of fixed size



\section*{Transformations}
of



DO i \(=0, \mathrm{~m}-1\) DO \(\mathrm{j}=0, \mathrm{k}-1\)

END
END

loop nests

\section*{Transformations defined by matrices}

Transformation matrices: systematic transformation, check dependence vectors

Reversal
\[
\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) *\binom{i}{j}=\binom{i}{-j}=\binom{i^{\prime}}{j^{\prime}}
\]

Skewing
\[
\left(\begin{array}{cc}
1 & 0 \\
f & 1
\end{array}\right) *\binom{i}{j}=\binom{i}{f * i+j}=\binom{i^{\prime}}{j^{\prime}}
\]

Permutation \(\quad\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right) *\binom{i}{j}=\binom{j}{i}=\binom{i^{\prime}}{j^{\prime}}\)

\section*{Reversal}

Iteration count of one loop is negated, that dimension is enumerated backward
general transformation matrix

for \(i=0\) to \(M\)
for \(j=0\) to \(N\)


2-dimensional:
\[
\begin{array}{r}
\text { old loop variables } \\
\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) *\binom{\mathrm{i}}{\mathrm{j}}=\binom{\mathrm{i}}{-\mathrm{j}}=\binom{\mathrm{ir}}{\mathrm{jr}}
\end{array}
\]
\[
\text { for ir }=0 \text { to } \mathrm{M}
\]
\[
\text { for jr }=-\mathbf{N} \text { to } 0
\]
original


\section*{Skewing}

The iteration count of an outer loop is added to the count of an inner loop; iteration space is shifted; execution order of iteration points remains unchanged
general transformation matrix:

for \(i=0\) to \(M\)
for \(j=0\) to \(N\)

original

2-dimensional:
\[
\begin{aligned}
& \text { loop variables } \\
& \text { old new } \\
& \left(\begin{array}{ll}
1 & 0 \\
f & 1
\end{array}\right) *\binom{i}{j}=\binom{i}{f^{*} i+j}=\binom{\text { is }}{j s} \\
& \text { for is }=0 \text { to } M \\
& \text { for js }=f * i s \text { to N+f*is } \\
& \text { transformed }
\end{aligned}
\]

\section*{Permutation}

Two loops of the loop nest are interchanged; the iteration space is flipped; the execution order of iteration points changes; new dependence vectors must be legal.
general transformation matrix:

for \(i=0\) to \(M\) for \(j=0\) to \(N\)


2-dimensional:
\[

\]
\[
\begin{aligned}
& \text { for ip }=0 \text { to } N \\
& \text { for jp }=0 \text { to } M
\end{aligned}
\]
transformed


\section*{Use of Transformation Matrices}
- Transformation matrix \(\mathbf{T}\) defines new iteration counts in terms of the old ones: \(\mathbf{T} * \mathbf{i}=\mathbf{i}^{\prime}\)
\[
\text { e.g. Reversal } \quad\left(\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right) *\binom{i}{j}=\binom{i}{-j}=\binom{i^{\prime}}{j^{\prime}}
\]
- Transformation matrix \(\mathbf{T}\) transforms old dependence vectors into new ones: \(\mathbf{T}\) * d=d'
\[
\text { e.g. } \quad\left(\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right) *\binom{1}{1}=\binom{1}{-1}
\]
- inverse Transformation matrix \(\mathbf{T}^{-1}\) defines old iteration counts in terms of new ones, for transformation of index expressions in the loop body: \(\mathbf{T}^{\mathbf{- 1}} * \mathbf{i}^{\mathbf{\prime}}=\mathbf{i}\)
\[
\text { e.g. } \quad\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) *\binom{i^{\prime}}{j^{\prime}}=\binom{i^{\prime}}{-j^{\prime}}=\binom{i}{j}
\]
- concatenation of transformations first \(T_{1}\) then \(T_{2}: T_{2}{ }^{*} T_{1}=T\)
\[
\text { e.g. } \quad\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) *\left(\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right)=\left(\begin{array}{rr}
0 & -1 \\
1 & 0
\end{array}\right)
\]

\section*{Inequalities Describe Loop Bounds}

The bounds of a loop nest are described by a set of linear inequalities.
Each inequality separates the space in "inside and outside of the iteration space":


\section*{Transformation of Loop Bounds}

The inverse of a transformation matrix \(\mathbf{T}^{\mathbf{- 1}}\) transforms a set of inequalities: \(\mathbf{B} \mathbf{*}^{\mathbf{- 1}} \mathbf{i} \leq \mathbf{C}\)
inverse
B
\(\mathrm{T}^{-1}\)
\(B * T^{-1}\)
skewing
\(\left(\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right)\)
example 1 \(\left(\begin{array}{rr}1 & 0 \\ -1 & 1\end{array}\right)\) new bounds:
\[
\left.\begin{array}{cc}
B^{*} T^{-1} \\
-1 & 0 \\
1 & 0 \\
1 & -1 \\
-1 & 1
\end{array}\right) *\binom{i^{\prime}}{j^{\prime}} \leq\left(\begin{array}{ll}
1 & i^{\prime} \leq 0 \\
2 & i^{\prime} \leq M \\
3 & i^{\prime}-j^{\prime} \leq 0 \\
4 & -i^{\prime}+j^{\prime} \leq N
\end{array} \quad 1.2\right.
\]

\section*{Example for Transformation and Parallelization of a Loop}
```

for i = O to N
for j = O to M
a[i, j] = (a[i, j-1] + a[i-1, j]) / 2;

```

Parallelize the above loop.
1. Draw the iteration space.
2. Compute the dependence vectors and draw examples of them into the iteration space. Why can the inner loop not be executed in parallel?
3. Apply a skewing transformation and draw the iteration space.
4. Apply a permutation transformation and draw the iteration space. Explain why the inner loop now can be executed in parallel.
5. Compute the matrix of the composed transformation and use it to transform the dependence vectors.
6. Compute the inverse of the transformation matrix and use it to transform the index expressions.
7. Specify the loop bounds by inequalities and transform them by the inverse of the transformation matrix.
8. Write the complete loops with new loop variables ip and jp and new loop bounds.

\section*{Solution of the Transformation and Parallelization Example}



6.: Inverse
5.:
\[
\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right)\binom{0}{1}=\binom{1}{0} \quad\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right)\binom{1}{0}=\binom{1}{1} \quad\left(\begin{array}{rr}
0 & 1 \\
1 & -1
\end{array}\right)
\]
7. Bounds: B orig.: \(\left(\begin{array}{rr}-1 & 0 \\ 1 & 0 \\ 0 & -1 \\ 0 & 1\end{array}\right)\) \(C\)
0
\(N\)
0
\(M\)


1, \(3=>0 \leq i p\)
\(2,4=>\mathrm{ip} \leq M+N\)
3 -ip+jp \(\leq 0\)
\(1,4=>\max (0, i p-M) \leq j p\)
4 ip - jp \(\leq M\)
\(2,3=>\mathrm{j} p \leq \min (i p, N)\)
8. for ip \(=0\) to \(M+N\)
\[
\begin{aligned}
& \text { for } j p=\max (0, i p-M) \text { to } \min (i p, N) \\
& \quad a[j p, i p-j p]=(a[j p, i p-j p-1]+a[j p-1, i p-j p]) / 2 ;
\end{aligned}
\]

\section*{Transformation and Parallelization}


\section*{Data Mapping}

Goal:
Distribute array elements over processors, such that as many accesses as possible are local.

Index space of an array:
n-dimensional space of integral index points (polytope)
- same properties as iteration space
- same mathematical model
- same transformations are applicable (Skewing, Reversal, Permutation, ...)
- no restrictions by data dependences

\section*{Data distribution for parallel loops}
index space of B original
transformed skewing \(f=-1\) (i,j) \(->(i, j-i)\)


DECLARE B[-1..N, -1..N]
FOR IS := 0.. N
FOR JS := -IS .. 0
B[IS,JS+IS] :=
B [IS-1, JS+IS] +B[IS-1, JS-1+IS]
END FOR
END FOR
DECLARE B[-1..N, \(-\mathrm{N} . \mathrm{N}]\)
B[IS, JS \(]:=\)
\(\quad\) B[IS-1, JS-1] + B[IS-1, JS-1]

\section*{Check Your Knowledge (1)}

\section*{Optimization, CFA:}
1. Explain graphs that are used in program analysis.
2. Which optimizing transformations need analysis of execution pathes?
3. Which optimizing transformations do not need analysis of execution pathes?
4. Give an example for a pair of transformations such that one enables the other.
5. Define the control-flow graph. Describe transformations on the CFG.
6. Define the dominator relation. What is it used for?
7. Describe an algorithm for computing dominator sets.
8. Define natural loops.
9. What is the role of the loop header and of the pre-header.
10. Show a graph that has a cycle but no natural loop.
11. Define induction variables, and explain the transformation technique.

\section*{Check Your Knowledge (2)}

\section*{Optimization, DFA:}
12. Describe the schema for DFA equations for the four problem categories.
13. Explain the relation of the meet operator, the paths in the graph, and the DFA solutions.
14. Describe the DFA problem reaching definitions.
15. Describe the DFA problem live variables.
16. Describe the DFA problem available expressions.
17. Describe the DFA problem copy propagation.
18. Describe the DFA problem constant propagation.
19. Describe the iterative DFA algorithm; its termination; its complexity.
20. Describe an heuristic improvement of the iterative DFA algorithm.
21. Extend constant propagation to interval propagation for bounds checks. Explain the interval lattice.
22. What is the role of lattices in DFA?
23. Describe lattices that are common for DFA.

\section*{Check Your Knowledge (3)}

\section*{Object Oriented Program Analysis:}
24. Describe techniques to reduce the number of arcs in call graphs.
25.Describe call graphs for object oriented programs.
26. Describe techniques to reduce the number of arcs in object oriented call graphs.

Code Generation, Storage mapping:
27. Explain the notions of storage classes, relative addresses, alignment, overlay.
28. Compare storage mapping of arrays by pointer trees to mapping on contiguous storage.
29. Explain storage mapping of arrays for C . What is different for C , for Fortran?
30. For what purpose are array descriptors needed? What do they contain?
31. What is the closure of a function? In which situation is it needed?
32. Why must a functional parameter in Pascal be represented by a pair of pointers?
33. What does an activation record contain?
34. Explain static links in the run-time stack. What is the not-most-recent property?
35. How do C, Pascal, and Modula-2 ensure that the run-time stack discipline is obeyed?
36. Why do threads need a separate run-time stack each?

\section*{Check Your Knowledge (4)}
37. Explain the code for function calls in relation to the structure of activation records.
38. Explain addressing relative to activation records.
39. Explain sequences for loops.
40. Explain the translation of short circuit evaluation of boolean expressions.

Which attributes are used?
41. Explain code selection by covering trees with translation patterns.
42. Explain a technique for tree pattern selection using 3 passes.
43. Explain code selection using parsing. What is the role of the grammar?

\section*{Register Allocation}
44. How is register windowing used for implementation of function calls?
45. Which allocation technique is applied for which program context?
46. Explain register allocation for expression trees. Which attributes are used?
47. How is spill code minimized for expression trees?
48. Explain register allocation for basic blocks? Relate the spill criteria to paging techniques.
49. Explain register allocation by graph coloring. What does the interference graph represent?
50. Explain why DFA life-time analysis is needed for register allocation by graph coloring.

\section*{Check Your Knowledge (5)}

\section*{Instruction Scheduling}
51. What does instruction scheduling mean for VLIW, pipeline, and vector processors?
52. Explain the kinds of arcs of DDGs (flow, anti, output).
53. What are loop carried dependences?
54. Explain list scheduling for parallel FUs. How is the register need modelled?

Compare it to Belady's register allocation technique.
55.How is list scheduling applied for arranging instructions for pipeline processors?
56. Explain the basic idea of software pipelining. What does the initiation interval mean?

\section*{Loop Parallelization}
57. Explain dependence vectors in an iteration space.

What are the admissible directions for sequential and for parallelized innermost loops?
58. What is tiling, what is scaling?
59. Explain SRP transformations.
60. How are the transformation matrices used?
61. How are loop bounds transformed?
62. Parallelize the inner loop of a nest that has dependence vectors \((1,0)\) and \((0,1)\) ?```

